Advertisement

Differential Equations

, Volume 36, Issue 8, pp 1225–1232 | Cite as

Solvability of a nonstationary thermal convection problem for a viscoelastic incompressible fluid

  • T. G. Sukacheva
Partial Differential Equations

Keywords

Configuration Space Sectorial Operator Linear Continuous Operator Interpolation Space Analytic Semigroup 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Oskolkov, A.P.,Zap. Nauchn. Sem. LOMI Akad. Nauk SSSR, 1976, vol. 59, pp. 133–177.MathSciNetGoogle Scholar
  2. 2.
    Oskolkov, A.P.,Zap. Nauchn. Sem. LOMI Akad. Nauk SSSR, 1980, vol. 96, pp. 233–236.MathSciNetGoogle Scholar
  3. 3.
    Sviridyuk, G.A.,Izv. Vyssh. Uchebn. Zaved. Matematika, 1990, no. 12, pp. 65–70.Google Scholar
  4. 4.
    Sviridyuk, G.A.,Algebra i Analiz, 1994, vol. 6, no. 5, pp. 252–272.MathSciNetGoogle Scholar
  5. 5.
    Sviridyuk, G.A.,Uspekhi Mat. Nauk, 1994, vol. 49, no. 4, pp. 47–74.MathSciNetGoogle Scholar
  6. 6.
    Sviridyuk, G.A.,Differents. Uravn., 1987, vol. 23, no. 12, pp. 2169–2171.MathSciNetGoogle Scholar
  7. 7.
    Oskolkov, A.P.,Zap. Nauchn. Sem. LOMI Akad. Nauk SSSR, 1991, vol. 198, pp. 31–48.MATHGoogle Scholar
  8. 8.
    Sviridyuk, G.A.,Izv. RAN. Ser. Mat, 1993, vol. 57, no. 3, pp. 192–207.Google Scholar
  9. 9.
    Sviridyuk, G.A. and Sukacheva, T.G.,Differents. Uravn., 1990, vol. 26, no. 2, pp. 250–258.MathSciNetGoogle Scholar
  10. 10.
    Sviridyuk, G.A. and Sukacheva, T.G.,Sib. Mat. Zh., 1990, vol. 31, no. 5, pp. 109–119.MathSciNetGoogle Scholar
  11. 11.
    Levine, H.A.,Arch. Rat. Mech. Anal, 1973, vol. 51, no. 5, pp. 371–386.MATHCrossRefGoogle Scholar
  12. 12.
    Bokareva, T.A., Investigation of Phase Spaces of Sobolev-Type Equations with Relatively Sectorial Operators,Cand. Sci. (Phys.-Math.) Dissertation. St. Petersburg, 1993.Google Scholar
  13. 13.
    Borisovich, Yu.G., Zvyagin, V.G., and Sapronov, Yu.L,Uspekhi Mat. Nauk, 1977, vol. 32, no. 4, pp. 3–54.MATHGoogle Scholar
  14. 14.
    Marsden, J. and McCracken, M.,The Hopf Bifurcation and Its Application, Heidelberg: Springer, 1976. Translated under the titleBifurkatsiya rozhdeniya tsikla i ee prilozheniya, Moscow: Mir, 1980.Google Scholar
  15. 15.
    Sviridyuk, G.A.,Izv. Vyssh. Uchebn. Zaved. Matematika, 1994, no. 1, pp. 62–70.Google Scholar
  16. 16.
    Sviridyuk, G.A.,Dokl. Akad. Nauk SSSR, 1991, vol. 318, no. 4, pp. 828–831.MathSciNetGoogle Scholar
  17. 17.
    Sviridyuk, G.A., Sukacheva, T.G., and Dudko, L.L.,Dokl. RAN, 1995, vol. 345, no. 1, pp. 25–27.MathSciNetGoogle Scholar
  18. 18.
    Sviridyuk, G.A.,Dokl. RAN, 1993, vol. 329, no. 3, pp. 274–277.Google Scholar
  19. 19.
    Sviridyuk, G.A. and Fedorov, V.E.,Sib. Mat. Zh., 1995, vol. 36, no. 5, pp. 1130–1145.MathSciNetGoogle Scholar
  20. 20.
    Henry, D.,Geometric Theory of Semilinear Parabolic Equations, Heidelberg: Springer-Verlag, 1981. Translated under the titleGeometricheskaya teoriya polulineinykh parabolicheskikh uravnenii, Moscow, 1985.MATHGoogle Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2000

Authors and Affiliations

  • T. G. Sukacheva
    • 1
  1. 1.Novgorod State UniversityNovgorodRussia

Personalised recommendations