Advertisement

Differential Equations

, Volume 36, Issue 1, pp 21–29 | Cite as

Uniformly observable linear nonstationary systems with many outputs and their canonical forms

  • A. I. Astrovskii
  • I. V. Gaishun
Ordinary Differential Equations
  • 94 Downloads

Keywords

Canonical Form Output Function Injective Mapping Observable System Observability Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gaishun, I.V. and Astrovskii, A.I.,Dokl. Akad. Nauk Belarusi, 1996, vol. 40, no. 5, pp. 5–8.MathSciNetGoogle Scholar
  2. 2.
    Astrovskii, A.I. and Gaishun, I.V.,Avtomat. Telemekh., 1998, no. 7, pp. 3–13.Google Scholar
  3. 3.
    Astrovskii, A.I. and Gaishun, I.V.,Izv. RAN. Teoriya i sistemy upravleniya, 1998, no. 2, pp. 24–30.Google Scholar
  4. 4.
    Gaishun, I.V.,Differents. Uravn., 1998, vol. 34, no. 6, pp. 727–731.MathSciNetGoogle Scholar
  5. 5.
    Gaishun, I.V.,Avtomat. Telemekh., 1999, no. 2, pp. 11–18.Google Scholar
  6. 6.
    Gaishun, I.V.,Tr. In-ta matematiki NAN Belarusi, 1999, vol. 2, pp. 58–62.MathSciNetGoogle Scholar
  7. 7.
    Gantmakher, F.R.,Teoriya matrits (Theory of Matrices), Moscow, 1988.Google Scholar
  8. 8.
    Horn, R. and Johnson, C.,Matrix Analysis, Cambridge: Cambridge Univ. Press, 1990. The 1985 edition translated under the titleMatrichnyi analiz, Moscow, 1989.MATHGoogle Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2000

Authors and Affiliations

  • A. I. Astrovskii
    • 1
  • I. V. Gaishun
    • 1
  1. 1.Institute for MathematicsNational Academy of SciencesBelarus

Personalised recommendations