Advertisement

Bulletin of Materials Science

, Volume 20, Issue 1, pp 49–66 | Cite as

Microstructure evolution in chelated partially hydrolysed alumina sols during sonogelling

  • Manoj M Hardias
  • Jayesh R Bellare
Article

Abstract

Optically transparent alumina sonogels with optical transmittance of over 90% have been prepared by chemically modifying a partially hydrolysed aluminium sec-butoxide precursor with ethyl acetoacetate. Chelating the alkoxide in a 1:2 molar ratio has permitted an enhanced control over microstructural changes during the sol to sonogel synthesis. Particle size and morphology changes during controlled sonogelling indicate that the sol to sonogel evolution in chelated alkoxides occurs by a dissolution-nucleation process in which the chelated species dissolves and aluminium hydroxide nucleates. The chelated agglomerates break down with increasing amount of water, and finally dissolve into the alcohol rich medium. The breakdown of chelated agglomerates is accompanied by the formation of nanosized aluminium hydroxide particles which grow with water addition into aggregated micron sized, spherical species. The chelated agglomerates evolve from a spherical geometry to a cylindrical morphology to a tapelike structure with a preferred orientation, and finally to a wavy sheet-like matrix. The nano-aluminium hydroxide particles increase in size at every water addition and grow to about 1 μm at the sonogel point.

Keywords

Sol-gel microstructure alkoxide chelate cryo-SEM agglomerate nanoalumina evolution viscosity QELS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Babonneau F, Coury L and Livage J 1990J. Non-Cryst. Solids 121 153CrossRefGoogle Scholar
  2. Bellare J R 1988Cryo-electron and optical microscopy of surfactant microstructures, Doctoral Dissertation, University of Minnesota, USAGoogle Scholar
  3. Bhadriraju K and Bellare J R 1993Proc. Microsc. Soc. Am. 51 235Google Scholar
  4. Ching J Y C and Klein L C 1988aJ. Am. Ceram. Soc. 71 83CrossRefGoogle Scholar
  5. Ching J Y C and Klein L C 1988bJ. Am. Ceram. Soc. 71 86CrossRefGoogle Scholar
  6. Debsikdar J C 1985J. Mater. Sci. 20 4454CrossRefGoogle Scholar
  7. Finsy R 1994Adv. Colloid & Interface Sci. 52 79CrossRefGoogle Scholar
  8. Haridas M M and Bellare J R 1995a A process to synthesize highly transparent sonogels from chelated alkoxides, Indian patent application No. 487/BOM/95Google Scholar
  9. Haridas M M and Bellare J R 1995b A method to produce nordstrandite from chelated aluminium alkoxides, Indian patent application No. 488/BOM/95Google Scholar
  10. Haridas M M and Bellare J R 1995cProc. 3rd international engineering foundation conference (eds.) Brij Moudgil and Pradip (Pune: Tata Research Development and Design Centre) pp 17–21 (to be published)Google Scholar
  11. Haridas M M and Bellare J R 1996Ceram. Int. (accepted)Google Scholar
  12. Haridas M M, Menon A, Goyal N, Chandran S and Bellare J R 1995Ceram. Int. 22 155CrossRefGoogle Scholar
  13. Heinrich T, Raether F and Marsmann H 1994J. Non-Cryst. Solids 168 14CrossRefGoogle Scholar
  14. Ichinose N, Ozaki Y and Kashu S 1992 inSuperfine particle technology 1st ed. (London: Springer-Verlag)Google Scholar
  15. Jahn W and Strey R 1988J. Phys. Chem. 92 2294CrossRefGoogle Scholar
  16. Jones R W 1989 inThe fundamental principles of sol-gel technology 1st ed. (London: Inst. of Metals)Google Scholar
  17. Leaustic A and Riman R E 1991J. Non-Cryst. Solids 135 259CrossRefGoogle Scholar
  18. Lee J W, Won C W and Chun B S 1990J. Korean Inst. Met. 28 437Google Scholar
  19. Mehrotra R K and Mehrotra R C 1961Canadian J. Chem. 39 795CrossRefGoogle Scholar
  20. Nass R and Schmidt H J 1989Proc. 2nd. int. conf. on ceramic powder processing science (ed.) H Hausner (Cologne: Publ. Deutsche Keramische Gesellschaft) pp 69–73Google Scholar
  21. Nass R and Schmidt H J 1990J. Non-Cryst. Solids 121 329CrossRefGoogle Scholar
  22. Ogihara T, Nakajima H, Yanagawa T, Ogata N and Yoshida K 1991J. Am. Ceram. Soc. 74 2263CrossRefGoogle Scholar
  23. Rueb C J and Zukoski C F 1992Mater. Res. Soc. Symp. Proc. 249 279Google Scholar
  24. Sakka S and Yoko T 1991Ceram. Int. 17 217CrossRefGoogle Scholar
  25. Sanchez C, Livage L, Henry M and Babonneau F 1988J. Non-Cryst. Solids 100 65CrossRefGoogle Scholar
  26. Saraswati V 1989Key Eng. Mater. 29 593CrossRefGoogle Scholar
  27. Schmidt H 1988J. Non-Cryst. Solids 100 51CrossRefGoogle Scholar
  28. Segal D 1989 inChemical synthesis of advanced materials 1st ed. (Cambridge: Cambridge University Press)Google Scholar
  29. Strawbridge I and James P F 1986Br. Ceram. Proc. 38 251Google Scholar
  30. Wengrovius J H, Garbauskas M F, Williams E A, Going R C, Donahue P E and Smith J F 1986J. Am. Chem. Soc. 108 982CrossRefGoogle Scholar
  31. Xu R, Pope E J A and Mackenzie J D 1988J. Non-Cryst. Solids 106 242CrossRefGoogle Scholar
  32. Yogo T and Iwahara H 1992J. Mater. Sci. 27 1499CrossRefGoogle Scholar
  33. Yoldas B E 1973J. Appl. Chem. Biotechnol. 23 803CrossRefGoogle Scholar
  34. Yoldas B E 1975Ceram. Bull. 54 286, 289Google Scholar
  35. Zarzycki J 1987J. Non-Cryst. Solids 95–96 173CrossRefGoogle Scholar
  36. Zarzycki J 1990J. Non-Cryst. Solids 121 110CrossRefGoogle Scholar
  37. Zarzycki J 1991 inGlasses and the vitreous state (Cambridge: Cambridge University Press)Google Scholar

Copyright information

© The Indian Academy of Sciences 1997

Authors and Affiliations

  • Manoj M Hardias
    • 1
  • Jayesh R Bellare
    • 1
  1. 1.Department of Chemical EngineeringIndian Institute of TechnologyPowai, BombayIndia

Personalised recommendations