Il Nuovo Cimento A (1965-1970)

, Volume 62, Issue 2, pp 401–410 | Cite as

Exact Bethe-Salpeter amplitudes in the static model

  • Q. Bui-Duy


The complete B.S. equation and the exact B.S. amplitude are derived in a soluble field model. Abnormal B.S. amplitudes are associated with states primarily composed of field quanta in addition to the two interacting particles. The role of the bound-state energy condition, or consequently the Wick's boundary condition in connection with the existence of abnormal B.S. solutions in the ladder approximation is discussed.


Negative Norm Exchange Boson Ladder Approximation Large Coupling Constant Discrete Energy Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Точные амплитуды Бете-Салпетера в статической модели


Выводятся полное уравнение Бете-Салпетера и точная амплитуда Бете-Салпетера в решаемой модели теории поля. Анормальные амплитуды Бете-Салпетера связаваются с состояниями предварительно образованными квантами поля в добавление к двум взаимодействуюшим частицам. Обсуждается роль условия на энергию связанного состояния или граничного условия Вика в связи с сущест-вованием анормальных решений Бете-Салиетера в лестничном приближении.


Si derivano le equazioni complete di B.S. e l'ampiezza esatta di B.S. in un modello di campo risolvibile. Si associano le ampiezze anomale di B.S. con gli stati primariamente composti di quanti di campo in aggiunta alle due particelle interagenti. Si discute il ruolo della condizione dell'energia dello stato legato, o, in conseguenza, la condizione di soglia di Wick in connessione con l'esistenza delle soluzioni anomale di B.S. nell'approssimazione a scalini.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    C. Zemach: Latin American Summer Lectures (1966).Google Scholar
  2. (2).
    G. C. Wick:Phys. Rev.,96, 1124 (1954);R. E. Cutkosky:Phys. Rev.,96, 1135 (1954) where the exchange boson has zero mass.C. Schwartz:Phys. Rev.,137, B 717 (1965), with finite-mass boson.ADSMathSciNetCrossRefGoogle Scholar
  3. (3).
    N. Nakanishi:Phys. Rev.,138, B 1182 (1965);139, B 1401 (1965).ADSMathSciNetCrossRefGoogle Scholar
  4. (4).
    M. Gell-Mann andF. Low:Phys. Rev.,84, 350 (1951).ADSMathSciNetCrossRefGoogle Scholar
  5. (5).
    S. Mandelstam:Proc. Roy. Soc., A232, 248 (1955).ADSMathSciNetCrossRefGoogle Scholar
  6. (6).
    Y. Ohnuki andK. Watanabe:Progr. Theor. Phys. (Kyoto) Suppl., extra number, 416 (1965).Google Scholar
  7. (7).
    R. E. Cutkosky andM. Leon:Phys. Rev.,135, B 1445 (1964).ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica 1969

Authors and Affiliations

  • Q. Bui-Duy
    • 1
  1. 1.Max-Planck-Institut für Physik und AstrophysikMunich

Personalised recommendations