Advertisement

Il Nuovo Cimento A (1965-1970)

, Volume 65, Issue 1, pp 197–204 | Cite as

Calculation of the transition matrix of the Wick-Cutkosky model

  • E. Zur Linden
Article

Summary

The inhomogeneous Bethe-Salpeter equation for the transition matrix of the Wick-cutkosky model is solved. The solution is represented in various forms. Some properties of the transition matrix are investigated.

Keywords

Transition Matrix Inhomogeneous Equation Wick Rotation Outgoing Particle Ladder Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Вычисление матрицы перехода для модели Вика-Куткоцкого

Резюме

Решается неоднородное уравнение Бете-Салпетера для матрицы перехода в модели Вика-Куткоцкого. Рещение представляется в различных формах. Исследуются некоторые свойства матрицы перехода.

Riassunto

Si risolve l'equazione inomogenea di Bethe e Salpeter per la matrice di transizione del modello di Wick-Cutkosky. Si rappresenta la soluzione in varie forme. Si studiano alcune proprietà della matrice di transizione.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    G. C. Wick:Phys. Rev.,96, 1124 (1954).ADSMathSciNetCrossRefGoogle Scholar
  2. (2).
    R. E. Cutkosky:Phys. Rev.,96, 1135 (1954).ADSMathSciNetCrossRefGoogle Scholar
  3. (3).
    E. zur Linden:Nuovo Cimento,63 A, 181 (1969).CrossRefGoogle Scholar
  4. (4).
    E. zur Linden:Nuovo Cimento,63 A, 193 (1969).CrossRefGoogle Scholar
  5. (5).
    J. Schwinger:Journ. Math. Phys.,5, 1606 (1964).ADSMathSciNetCrossRefGoogle Scholar
  6. (6).
    R. Finkelstein andD. Levy:Journ Math. Phys.,8, 2147 (1967).ADSCrossRefGoogle Scholar
  7. (*).
    See the work ofNakanishi, for example (7), and (3,4).Google Scholar
  8. (7).
    N. nakanishi:Phys. Rev.,147, 1153 (1966).ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica 1970

Authors and Affiliations

  • E. Zur Linden
    • 1
  1. 1.Max-Planck-Institut für Physik und AstrophysikMünchen

Personalised recommendations