Advertisement

Il Nuovo Cimento A (1965-1970)

, Volume 65, Issue 1, pp 72–78 | Cite as

The Glashow-Weinberg model forSU3SU3 symmetry breaking

  • J. Cleymans
Article

Summary

It is shown that the disturbing features of the Glashow-Weinberg model for breakingSU3SU3 symmetry, namely the inequalitymκ⩽670 MeV and the valuef+(0)=0.85, disappear if we use instead of the first Weinberg sum rule, the «broken» spectral sum rules proposed by Sugawara. These sum rules are based on mass mixing in the Lagrangian of the algebra of fields. TakingFK/Fπf+(0)=1.22, the Glashow-Weinberg limit is relaxed and we need have onlymκ⩽1428 MeV. Furthermore we findf+(0)=0.97. Formκ=1080, 1100, 1160 and 1200 MeV the Gell-Mann symmetry-breaking parameterc equals −1.25, −1.23, −1.21 and −1.1 respectively.

Keywords

Form Factor Ttse Disturbing Feature Pseudoscalar Density Kappa Meson 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Модель Глашоу-Вейнберга для нарушенияSU3SU3 симметрии

Резюме

Показывается, что смущающие особенности модели Глашоу-Вейнберга для нарушенияSU3SU3 симметрии, а именно, неравенствоmκ⩽670 МэВ и величинаf+(0)=0.85, исчезают, если мы используем, вместо первого правила сумм Вейнберга, «нарушенные» спектральные правила сумм, предложенные Сугавара. Эти правила сумм основываются на смешивании масс в лагранжиане алгебры полей. СчитаяFK/Fπf+(0)=1.22, предел Глашоу-Вейнберга смягчается и мы вынуждены иметь лишьmκ⩽1428 МэВ. Более того, мы находимf+(0)=0.97. Дляmκ=1080, 1100, 1160 и 1200 МэВ параметр нарушения симметрии Гелл-Манна с равняется соответственно −1.25, −1.23, −1.21 и −1.1.

Riassunto

Si dimostra che le caratteristiche che disturbano nel modello di Glashow-Weinberg per la rottura della simmetriaSU3SU3, e cioè la diseguaglianzamκ⩽670 MeV ed il valoref+(0)=0.85, scompaiono se si usano, invece della prima regola di somma di Weinberg, le regole di somma spettrali «rotte» proposte da Sugawara. Queste regole di somma si basano sulla miscela delle masse nella lagrangiana dell'algebra dei campi. PrendendoFK/Fπf+(0)=1.22, il limite di Glashow-Weinberg non è più rigoroso ed è sufficiente averemκ⩽1428 MeV. Si trova inoltref+(0)=0.97. Permκ=10.80, 1100, 1160 e 1200 MeV il parametroc di Gell-Mann per la rottura della simmetria assume rispettivamente i valori −1.25, −1.23, −1.21 e −1.1.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    S. Glashow andS. Weinberg:Phys. Rev. Lett.,20, 224 (1968). See alsoS. Weinberg:XIV International Conference on High-Energy Physics, Rapporteur's talk, Vienna, 1968;S. Glashow:VII Internationale Universitätswochen für Kernphysik, Schladmig, 1968.ADSCrossRefGoogle Scholar
  2. (2).
    E. C. Fowler, L. Montanet andR. Bizzarri:Phys. Rev. Lett.,21, 833 (1968).ADSCrossRefGoogle Scholar
  3. (3).
    R. W. Bland, G. Goldhaber, B. H. Hall andG. H. Trilling:Phys. Rev. Lett.,21, 173 (1968).ADSCrossRefGoogle Scholar
  4. (4).
    L. Kirsch:Phys. Rev.,175, 1733 (1968).ADSCrossRefGoogle Scholar
  5. (5).
    S. Weinberg:Phys. Rev. Lett.,18, 507 (1967). See alsoS. Glashow, H. Schnitzer andS. Weinberg:Phys. Rev. Lett.,19, 139 (1967).ADSCrossRefGoogle Scholar
  6. (6).
    M. Gourdin:Miscellaneous topics related to the annihilation of an electron-positron pair into mesons, Orsay, 1969.Google Scholar
  7. (7).
    J. E. Augustin, D. Benaksas, J. C. Bizot, J. Buon, B. Delcour, V. Gracco, J. Haissinski, J. Jeanjean, D. Lalanne, F. Laplanche, J. Le François, P. Lehmann, P. Marin, H. Nguyen Ngoc, J. Perez-Y-Jorba, F. Richard, E. Rumpf, E. Silva, S. Tavenier andD. Treille:Phys. Lett.,28 B, 503 (1968).ADSGoogle Scholar
  8. (8).
    N. Kroll, T. D. Lee andB. Zumino:Phys. Rev.,157, 1376 (1967). See alsoI. Kimel:Phys. Rev. Lett.,21, 177 (1968).ADSCrossRefGoogle Scholar
  9. (9).
    T. D. Lee, S. Weinberg andB. Zumino:Phys. Rev. Lett.,18, 1029 (1967).ADSCrossRefGoogle Scholar
  10. (10).
    H. Sugawara:Phys. Rev. Lett.,21, 772 (1968).ADSCrossRefGoogle Scholar
  11. (11).
    E. Fischbach andJ. Smith: State University of New York at Stony-Brook preprint (1969). See alsoP. R. Auvil andN. G. Deshpande:SU 3SU 3 breaking, K ℓ3 decays and the kappa enhancement, Northwestern University, Illinois, 1969.Google Scholar
  12. (12).
    T. G. Trippe, C. Y. Chien, E. Mallamud, J. Mellema, P. E. Schlein, W. E. Slater, D. H. Stork andH. K. Ticho:Phys. Lett.,28 B, 203 (1968).ADSCrossRefGoogle Scholar
  13. (13).
    D. J. Grennell, U. Karshon, K. W. Lai, J. S. O'Neall andJ. M. Scarr:Phys. Rev. Lett.,22, 487 (1969). See alsoW. De Baere, J. Debaisieux, P. Dufour, F. Grard, J. Heughebaert, L. Pape, P. Peeters, F. Verbeure, R. Windmolders, Y. Goldschmidt-Clermont, V. P. Henri, B. Jongejans, A. Moiseev, F. Muller, J. M. Perreau, A. Prokeš andV. Yarba:Nuovo Cimento,51 A, 401 (1967).ADSCrossRefGoogle Scholar
  14. (14).
    M. Ademollo andR. Gatto:Phys. Rev. Lett.,13, 264 (1964).ADSCrossRefGoogle Scholar
  15. (15).
    M. Gell-Mann, R. Oakes andB. Renner:Phys. Rev.,175, 2195 (1968).ADSCrossRefGoogle Scholar
  16. (16).
    J. Ellis:Nucl. Phys. 13 B, 153 (1969).ADSCrossRefGoogle Scholar
  17. (17).
    Y. Nambu andJ. J. Sakurai:Phys. Rev. Lett.,11, 42 (1964).ADSCrossRefGoogle Scholar
  18. (18).
    For an analysis of the consequences of these equations, see:P. Auvil andN. Deshpande:Phys. Rev. 183, 1463 (1969).ADSCrossRefGoogle Scholar
  19. (19).
    The coupling constantsg K * andg KA are defined through: {fx76-1}.Google Scholar
  20. (20).
    I. Gerstein andH. Schnitzer:Phys. Rev.,175, 1876 (1968).ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica 1970

Authors and Affiliations

  • J. Cleymans
    • 1
  1. 1.Institut de Physique Théorique, Centre de Physique Nucléaire, Parc d'ArenbergUniversité Catholique de LouvainHeverlee

Personalised recommendations