Molecular Biotechnology

, Volume 8, Issue 2, pp 123–134 | Cite as

Overview of vaccines

  • Gordon Ada


This article lists the vaccines current available for the control of both viral and bacterial infections. They may be attenuated live or inactivated whole microorganisms, or subunit preparations. Many more are in the pipeline and increasing attention is being given to establishing their safety before registration. Following the earlier eradication of smallpox, good progress is now being made toward the global eradication of poliomyelitis and a new program to eliminate measles from the Americas has begun. A variety of new approaches to vaccine development is now available. The hepatitis B virus surface antigen, made by DNA-transfected yeast or mammalian cells, is the basis of the first genetically engineered vaccine. Early in the 21st century, new vaccines based on oligopeptides, recombinant live viral or bacterial vectors (often existing live vaccines), or recombinant DNA plasmids are likely to be registered for human use. The efficacy of vaccines depends on the immune responses generated, and the recent substantial increase in our understanding of the mammalian immune system now offers great opportunities for manipulation to best obtain desired responses. These include mixing vaccine formulations to maximize immune responses, and combining vaccines to simplify their administration. Despite these advances, some persisting infections, such as those caused by HIV, plasmodia, and mycobacteria, still pose a great challenge to vaccine developers.

Index Entries

Vaccines vaccination safety disease eradication immune response manipulation oligopeptides chimeric live vectors DNA plasmids vaccine administration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ada, G. and Ramsay, A. (1977)Vaccines, Vaccinations and the Immune Response. Lippincott-Raven, Philadelphia, PA.Google Scholar
  2. 2.
    Cadoz, M., Strady, A., Meigner, B., Taylor, J., Tartaglia, J., Paoletti, E., and Plotkin, S. (1992) Immunization with canarypox virus expressing rabies glycoprotein.Lancet 339, 1429–1432.PubMedCrossRefGoogle Scholar
  3. 3.
    Clark, H. F. and Offit, P. A. (1994) Rotavirus vaccines, inVaccines (2nd ed.) (Plotkin, S. A. and Mortimer, E. A., eds.), Saunders, Philadelphia, PA. pp. 809–822.Google Scholar
  4. 4.
    Maassab, H. F., Shaw, M. W., and Heilman, C. A. (1994) Live influenza virus vaccines, inVaccines (2nd ed.) (Plotkin, S. A. and Mortimer, E. A., eds.), Saunders, Philadelphia, PA, pp. 781–801.Google Scholar
  5. 5.
    Levine, M. M. (1994) Typhoid fever vaccines, inVaccines (2nd ed.) (Plotkin, S. A. and Mortimer, E. A., eds.), Saunders, Philadelphia, PA, pp. 597–634.Google Scholar
  6. 6.
    Curtiss, R., III, Kelly, S. M., Tinge, S. A., Tackett, C. O., Levine, M. M., Srinivasan, J., and Koopman, M. (1994) Recombinant Salmonella vectors in vaccine development.Dev. Biol. Stand. 82, 23–33.PubMedGoogle Scholar
  7. 7.
    Tartaglia, J., Perkus, M. E., and Taylor, J. (1992) NYVAC: a highly attenuated strain of vaccinia virus.Virology 188, 217–232.PubMedCrossRefGoogle Scholar
  8. 8.
    Daniel, M. D., Kirchoff, F., Czajak, S. C., Seghel, O. K., and Desrosiers, R. C. (1992) Protective effects of a live attenuated SIV vaccine with a deletion in the nef gene.Science 258, 1938–1940.PubMedCrossRefGoogle Scholar
  9. 9.
    Mortimer, E. A. (1994) Pertussis vaccine, inVaccines (2nd ed.) (Plotkin, S. A. and Mortimer, E. A., eds.), Saunders, Philadelphia, PA, pp 91–136.Google Scholar
  10. 10.
    Holmgren, J., Svennerholm, A. M., Clemens, J. D., Sack, D., Black, R., and Levine, M. (1987) An oral B subunit against cholera: from concept to successful field trial.Adv. Exp. Med. Biol. 216B, 1649–1660.PubMedGoogle Scholar
  11. 11.
    Mullbacher, A., Ada, G. L., and Tha Hla, R. (1988) Gamma-irradiated influenza A virus can prime for a cross-reactive and cross-protective immune response against influenza A virus.Immunol. Cell Biol. 66, 153–158.PubMedCrossRefGoogle Scholar
  12. 12.
    Braciale, T. J. and Yap, K. L. (1978) Role of viral infectivity in the induction of influenza virus-specific cytotoxic T cells.J. Exp. Med. 147, 1236–1252.PubMedCrossRefGoogle Scholar
  13. 13.
    Flynn, J. N., Keating, P., Hosie, M. J., Mackett, M., Stephens, E. B., Beatty, J. A., Neil, J. C., and Jarrett, O. (1996) Env-specific CTL predominate in cats protected from feline immunodeficiency virus infection by vaccination.J. Immunol. 157, 3658–3665.PubMedGoogle Scholar
  14. 14.
    Hilleman, M. R. (1992) Vaccine perspectives from the vantage of hepatitis B.Vaccine Res.1, 1–15.Google Scholar
  15. 15.
    Egea, E., Iglesias, A., Salazar, M., Morimoto, C., Kruskall, M. S., Awdeh, Z., Schlossman, F. S., Alper, C. A., and Yunis, E. J. (1991) The cellular basis for lack of antibody response to hepatitis B vaccine in humans.J. Exp. Med. 173, 531–542.PubMedCrossRefGoogle Scholar
  16. 16.
    Langmuir, I. D., Bregman, D. J., Kurlland, L. D., Nathanson, N., and Vector, M. (1984) An epidemiological and clinical evaluation of Guillain-Barre syndrome reported in association with the administration of swine influenza vaccine.J. Epidemiol. 119, 841–879.Google Scholar
  17. 17.
    Stratton, K. R., Howe, C. J., and Johnston, R. B. (1994)Adverse Events Associated with Childhood Vaccines: Evidence Bearing on Causality. Institute of Medicine, National Academy Press, Washington, DC, pp. 1–464.Google Scholar
  18. 18.
    Galaska, A. M., Lauer, B. A., Henderson, R. H., and Keja, J. (1984) Indications and contra-indications for vaccines used in the Expanded Programme of Immunization.Bull. WHO 62, 357–366.Google Scholar
  19. 19.
    Halsey, N. A. (1993) Increased mortality following high titer measles vaccines: too much of a good thing.Pediat. Infect. Dis. 12, 462–465.CrossRefGoogle Scholar
  20. 20.
    Kapikian, A. Z., Mitchell, R. H., and Chanock, R. M. (1969) An epidemiological study of altered clinical reactivity to respiratory syncytial (RS) virus in children previously vaccinated with inactivated RS virus vaccine.Am. J. Epidemiol. 89, 405–421.PubMedGoogle Scholar
  21. 21.
    Expanded Programme of Immunization. Certification of poliomyelitis eradication: the Americas, 1994. (1994)Wk. Epidemiol. Rec. 69, 293–295.Google Scholar
  22. 22.
    Fenner, F. (1984) Viral vectors for vaccines, inNew Approaches for Vaccine Development (Bell, R. and Torrigiani, G., eds.), Schwabe, Basel, pp. 187–192.Google Scholar
  23. 23.
    WHO Consultative Group on Poliomyelitis Vaccines. (1984) Report to World Health Organization, Geneva.Google Scholar
  24. 24.
    Ada, G. (1993) Vaccination in third world countries: guest editorial.Curr. Opin. Immunol. 5, 683–686.PubMedCrossRefGoogle Scholar
  25. 25.
    Measles Elimination by the Year 2000! (1994) EPI Newsletter (vol. 16); Pan American Health Organization, Washington, DC.Google Scholar
  26. 26.
    Douglas, R. G. (1993) The Childlren’s Vaccine Initiative: will it work?J. Inf. Dis. 168, 269–274.Google Scholar
  27. 27.
    Tam, J. P. (1988) Synthetic peptide vaccine design: synthesis and properties of a high density multiple antigenic peptide system.Proc. Natl. Acad. Sci. USA 85, 5409–5413.PubMedCrossRefGoogle Scholar
  28. 28.
    Pruksakorn, S., Currie, B., Brandt, E., Martin, D., Galbraith, A., Phornphutkin, C., Hunsakunachai, S., Manmontri, A., and Good, M. F. (1994) Towards a vaccine for rheumatic fever: identification of a conserved target epitope on M protein of group A streptococci.Lancet 344, 639–642.PubMedCrossRefGoogle Scholar
  29. 29.
    Kaumaya, P. T. P., Berndt, K. D., Heidorn, D. B., Trewhella, J., Kezdy, F. J., and Goldberg, E. (1990) Synthesis and biochemical characterization of engineered topographic immunogenic determinants with topology.Biochemistry 29, 13–23.PubMedCrossRefGoogle Scholar
  30. 30.
    Ramsay, A. J., Husband, A. J., Ramshaw, I. A., Bao, S., Matthaei, K. I., Kochler, G., and Kopf, M. (1994) The role of interleukin 6 in mucosal IgA antibody responses in vivo.Science 264, 561–563.PubMedCrossRefGoogle Scholar
  31. 31.
    Schoedel, F., Aguado, M.-T., and Lambert, P.-H. (1994) Introduction. Nucleic acid vaccines, plus many other contributions.Vaccine 12, 1491–1550.CrossRefGoogle Scholar
  32. 32.
    Boyer, J. D., Ugen, K. E., and Wang, B. (1997) Protection of chimpanzees from high dose heterologous HIV-1 challenge by DNA vaccination.Nature Med. 3, 526–531.PubMedCrossRefGoogle Scholar
  33. 33.
    Lai, W. C., Pakes, S. P., Ren, K., Lu, Y.-S., and Bennett, M. (1997) Therapeutic effect of DNA immunization of genetically susceptible mice infected with virulent Mycoplasma pulmonis.J. Immunol. 158, 2513–2516.PubMedGoogle Scholar
  34. 34.
    Leung, K.-N. and Ada, G. L. (1982) Different functions of subsets of effector T cells in murine influenza virus infection.Cell Immunol. 67, 312–324.PubMedCrossRefGoogle Scholar
  35. 35.
    Larson, H. S., Russell, R. G., and Rouse, B. Y. (1983) Recovery from lethal herpes simplex virus type 1 infection is mediated by cytotoxic T lymphocytes.Infect. Immunol. 41, 197–204.Google Scholar
  36. 36.
    Jackson, D. C., Ada, G. L., and Tha Hla, R. (1976) Cytotoxic T cells recognize very early, minor changes in ectromelia virus-infected target cells.Aust. J. Exp. Biol. Med. Sci. 54, 349–363.PubMedCrossRefGoogle Scholar
  37. 37.
    Zinkernagel, R. M. and Althage, A. (1977) Anti-viral protection by virus-immune cytotoxic T cells: infected target cells are lysed before infectious virus progeny is assembled.J. Exp. Med. 145, 644–651.PubMedCrossRefGoogle Scholar
  38. 38.
    Geisow, M. J. (1991) Unravelling the mysteries of molecular audit: MHC class I restriction.Tibtech 9, 403,404.Google Scholar
  39. 39.
    Ada, G. L. and McElrath, M. J. (1996) Perspective. HIV-1 vaccine-induced cytotoxic T cell responses: potential role in vaccine efficacy.AIDS Res. Hum. Retrov. 13, 243–248.Google Scholar
  40. 40.
    Taylor, G. (1994) The role of antibody in controlling and/or clearing virus infections, inStrategies in Vaccine Design (Ada, G. L., ed.) R G Landes, Austin, TX, pp. 17–34.Google Scholar
  41. 41.
    Griffin, D. E., Levine, B., Tyor, W. B., and Irani, D. N. (1992) The immune response in viral encephalitis.Semin. Immunol. 4, 111–119.PubMedGoogle Scholar
  42. 42.
    Eichelberger, M., Allan, W., Zijlstra, M., Jaenisch, R., and Doherty, P. C. (1991) Clearance of influenza virus respiratory infection in mice lacking class i major histocompatibility complex-restricted CD8+T cells.J. Exp. Med. 174, 875–880.PubMedCrossRefGoogle Scholar
  43. 43.
    Ramshaw, I. A., Ruby, J., Ramsay, A. J., Ada, G., and Karupiah, G. (1992) Expression of cytokines by recombinant vaccinia viruses: a model for studying cytokines in virus infections in vivo.Immunol. Rev. 127, 157–182.PubMedCrossRefGoogle Scholar
  44. 44.
    Ada, G. L. (1990) The immune response to antigens: the immunological principles of vaccination.Lancet 335, 523–526.PubMedCrossRefGoogle Scholar
  45. 45.
    Sharma, D. P., Ramsay, A. J., Maguire, D. J., Rolph, M. S., and Ramshaw, I. A. (1996) Interleukin-4 mediates down regulation of antiviral cytokine expression and of cytotoxic T lymphocyte responses, and exacerbates vaccinia virus expression in vivo.J. Virol. 70, 7103–7107.PubMedGoogle Scholar
  46. 46.
    Alfonso, L. C. C., Scharton, T. M., Vieira, J. Q., Wysocka, M., Trinchieri, G., and Scott, P. (1994) The adjuvant effect of interleukin-12 in a vaccine againtsLeishmania major.Science 263, 235–237.CrossRefGoogle Scholar
  47. 47.
    Sun, J. B., Holmgren, J., and Czerkinsky, C. (1994) Cholera toxin B subunit: an efficient trans-mucosal delivery system for induction of peripheral tolerance.Proc. Natl. Acad. Sci. USA 91, 10,795–10,799.Google Scholar
  48. 48.
    Cooper, P. D. (1994) The selective induction of different immune responses by vaccine adjuvants, inStrategies in Vaccine Design (Ada, G. L., ed.), R G Landes, Austin, TX, pp. 129–158.Google Scholar
  49. 49.
    Graham, B. S., Matthews, T. J., Belshe, R. B., Clements, M. L., Dolin, R., Wright, P. F., Gorse, G. G., and Schwartz, D. H. (1993) Augmentation of human immunodeficiency virus type 1 neutralizing antibody by priming with gp160 recombinant vaccinia and boosting with rgp160 in vaccinia naive adults.J. Inf. Dis. 167, 533–537.Google Scholar
  50. 50.
    El-Daher, N., Keefer, M. C., Reichnnan, R. C., Dolin, R., and Roberts, N. S. (1993) Persisting immunodeficiency virus type 1 gp 160-specific human T lymphocyte responses including CD8+ cytotoxic activity after receipt of envelope vaccines.J. Inf. Dis. 168, 306–313.Google Scholar
  51. 51.
    Leong, K. H., Ramsay, A. J., Moein, M. J., Ramshaw, I. A., and Ruby, J. (1995) Generation of enhanced immune responses by consecutive immunization with DNA and recombinant fowlpox virus, inVaccines, ′95 (Brown, F., Chanock, R., Ginsberg, H., Norrby, E., eds.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 321–327.Google Scholar
  52. 52.
    Gautam, A. M. and Glynn, P. (1990) Competition between foreign and self proteins in antigen presentation: ovalbumin can inhibit activation of myelin basic protein-specific T cells.J. Immunol. 144, 1177–1180.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 1997

Authors and Affiliations

  • Gordon Ada
    • 1
  1. 1.Division of Immunology and Cell Biology, John Curtin School of Medical ResearchThe Australian National University

Personalised recommendations