Advertisement

Il Nuovo Cimento A (1965-1970)

, Volume 56, Issue 4, pp 1087–1093 | Cite as

Large-angle scattering and the pion's Regge trajectory

  • P. G. O. Freund
Article

Summary

It is pointed out that in high-energy pp-scattering at large momentum transfers (−t≳6 (GeV)2) the Pomeranchukon contribution may be small and the pion trajectory may take over. The argument is centred around a lower bound for scattering amplitudes and the idea of exchange degeneracy. The kinematical variablex=−tln ((3+cosθ)/(1−cosθ)) is provided naturally by this picture for the discussion of large-angle ppscattering data.

Keywords

Regge Trajectory Angola Residue Function Large Momentum Transfer Diffraction Scattering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Рассеяние на большие углы и пионные траектории Редже

Резюме

Доказывается, что в рр-рассеянии при высоких энергиях в области больших передаваемых импульсов (−t≳6 ГэВ2) вклад Померанчукона является малым, и пионная траектория преобладает. Доказательство сосредоточивается около нижней границы для амплитуд рассеяния и идеи обменного вырождения. Кинематическая переменнаяx=−tln ((3+cosθ)/(1−cosд)) возникает естественно из этой картины для обсуждения данных по рр-рассеянию на большие углы.

Riassunto

Si mette in evidenza come nello scattering pp di alta energia a grandi impulsi trasferiti (−t≳(GeV)2) il contributo del Pomeranchukone possa essere piccolo e come la traiettoria del pione possa superarlo. Il ragionamento si basa su un limite inferiore per le ampiezze di scattering e sull'idea della degenerazione dello scambio. Questa rappresentazione fornisce spontaneamente la variabile cinematica ax=−tln ((3+cosθ)/(1−cosθ)) per la discussione dei dati dello scattering di grande angolo.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    J. Allaby, G. Cocconi, A. Diddens, A. Klovning, G. Matthiae, E. Sacharidis andA. Wetherell:Phys. Lett.,25 B, 156 (1967).CrossRefGoogle Scholar
  2. (2).
    V. N. Gribov andYa. I. Pomeranchuk:Phys. Lett.,2, 239 (1962).ADSMathSciNetCrossRefGoogle Scholar
  3. (3).
    P. G. O. Freund andR. Oehme:Phys. Rev.,129, 2361 (1963).ADSMathSciNetCrossRefGoogle Scholar
  4. (4).
    The opposite point of view is taken inK. Huang, C. E. Jones andV. L. Teplitz:Phys. Rev. Lett.,18, 146 (1967) where it is postulated that for larget the residue function of the Pomeranchukon is of the forme at witha=0.18 (GeV)−2, about 13 times smaller than the corresponding value (a=2.3) determined from diffraction scattering.ADSCrossRefGoogle Scholar
  5. (5).
    S. Mandelstam andL. L. Wang:Phys. Rev.,160, 1490 (1967);R. Oehme:Phys. Rev. Lett.,18, 1222 (1967).ADSCrossRefGoogle Scholar
  6. (6).
    P. G. O. Arnold:Phys. Rev. Lett.,14, 657 (1965).ADSCrossRefGoogle Scholar
  7. (7).
    R. G. Freund andP. Rotelli: unpublished.Google Scholar
  8. (8).
    S. Mandelstam:Ann. of Phys.,19, 254 (1952).ADSMathSciNetCrossRefGoogle Scholar
  9. (9).
    P. G. O. Freund:Phys. Rev.,157, 1412 (1967).ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica 1968

Authors and Affiliations

  • P. G. O. Freund
    • 1
    • 2
  1. 1.The Enrico Fermi InstituteThe University of ChicagoChicago
  2. 2.Department of PhysicsThe University of ChicagoChicago

Personalised recommendations