Advertisement

Il Nuovo Cimento (1955-1965)

, Volume 38, Issue 1, pp 270–284 | Cite as

On Schwinger’s Parametrization of Feynman Graphs

  • A. Peres
Article

Summary

Schwinger’s formula, (z+iɛ−1=−i∫ exp [ia(z+iɛ)] da, is applied to the propagators of Feynman diagrams. All the integrations over internal momenta are performed explicitly, leaving expressionswhich involve only the auxiliary parametersan and the external momenta. It is shown how to modify these formulas so as to « switch off » adiabatically the interaction outside a given space-time domain. Possible applications of this method to the study of analyticity properties are briefly discussed.

Rassiunto

Si applica la formula di Schwinger, (z+iɛ−1=−i∫ exp [ia(z+iɛ)] da, ai propagatori dei diagrammi di Feynman. Si eseguono esplicitamente tutte le integrazioni sui momenti interni, ottenendo espressioni in cui compaiono solo i parajnetri ausiliarian e i momenti esterni. Si mostra come modificare queste formule in modo da « spegnere » adiabaticamente l’interazione al di fuori di un dato dominio spazio-temporale. Si discutono brevemente possibili applicazioni di questo metodo allo studio delle proprietà di analiticità.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    R. P. Feynman:Phys. Rev.,76, 769 (1949).MathSciNetCrossRefGoogle Scholar
  2. (2).
    L. D. Landau:Nucl. Phys.,13, 181 (1959).CrossRefGoogle Scholar
  3. (3).
    R. E. Cutkosky:Journ. Math. Phys.,1, 429 (1960).MathSciNetCrossRefGoogle Scholar
  4. (4).
    J. Schwinger:Phys. Rev.,82, 664 (1951).MathSciNetCrossRefGoogle Scholar
  5. (5).
    W. Pauli andF. Villars:Rev. Mod. Phys.,21, 434 (1949).MathSciNetCrossRefGoogle Scholar
  6. (6).
    N. N. Bogoliubov andD. V. Shirkov:Introduction to the Theory of Quantized Melds (New York, 1959).Google Scholar
  7. (7).
    Y. Nambu:Nuovo Cimento,6, 1064 (1957).MathSciNetCrossRefGoogle Scholar
  8. (8).
    K. Symanzik:Progr. Theor. Phys.,20, 690 (1958).MathSciNetCrossRefGoogle Scholar
  9. (9).
    W. Garczynski:Bull. Acad. Polon. Sci.,9, 467, 473 (1961);10, 171, 457 (1962).MathSciNetGoogle Scholar
  10. (10).
    A. A. Logunov, I. T. Todorov andN. A. Chernikov:Zum. ėksp. Teor. Fiz.,42, 1285 (1962).MathSciNetGoogle Scholar
  11. (11).
    V. E. Asribekov:Nucl. Phys.,56, 161 (1964).MathSciNetCrossRefGoogle Scholar
  12. (12).
    E. M. Patterson:Topology (Edinburgh, 1959), p. 96.Google Scholar
  13. (13).
    T. T. Wu:Phys, Rev.,123, 678 (1961).CrossRefGoogle Scholar
  14. (14).
    V. E. Asribekov:Nucl. Phys.,34, 461 (1962).MathSciNetCrossRefGoogle Scholar
  15. (15).
    N. Byers andC. N. Yang:Rev. Mod. Phys.,35, 595 (1964).MathSciNetCrossRefGoogle Scholar
  16. (16).
    A. Peres:Nuovo Cimento,28, 78 (1963).CrossRefGoogle Scholar
  17. (17).
    T. Kinoshita:Journ. Math. Phys.,3, 650 (1962).CrossRefGoogle Scholar
  18. (18).
    J. S. R. Chisholm:Proc. Cambridge Phil. Soc,48, 300 (1952).MathSciNetCrossRefGoogle Scholar
  19. (19).
    R. J. Eden:Phys. Rev.,119, 1763 (1960).MathSciNetCrossRefGoogle Scholar
  20. (20).
    Y. Shimamoto:Nuovo Cimento,25, 1292 (1962).MathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica 1965

Authors and Affiliations

  • A. Peres
    • 1
  1. 1.Department of PhysicsIsrael Institute of TechnologyHaifa

Personalised recommendations