Il Nuovo Cimento (1955-1965)

, Volume 30, Issue 3, pp 906–915 | Cite as

Coherence theory of the electromagnetic field

  • B. Karczewski


Up to now the degree of coherence of a wave field was only defined on the basis of a scalar wave theory. In the present paper a generalization is proposed applicable to any quasi-monochromatic stationary electromagnetic field. This « electromagnetic degree of coherence », which is a single scalar quantity, is introduced from the analysis of an interference experiment and it is shown to be related to the trace of the correlation tensor of the electric field introduced byE. Wolf in 1954.


Sinora si era definito il grado di corenza di un ocampo d’onde solo sulla base della teoria ondulatoria scalare. Nel presente articolo si propone una generalizzazione applicabile ad ogni campo elettromagnetico stazionario quasi monocromatico. Si introduce questo « grado di coerenza elettromagnetico », che è una grandezza scalare singola, in base all’analisi di un esperimento di interferenza e si dimostra che esso è legato alla traccia del tensore di correlazione del campo elettrico introdotto daE. Wolf nel 1954.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    P. H. van Gittert:Physiea,1, 201 (1938).Google Scholar
  2. (2).
    F. Zernike:Physica,5, 785 (1938).ADSCrossRefGoogle Scholar
  3. (3).
    A. Blanc-Lapierre andP. Dumontet:Rev. d’Optique,34, 1 (1955).MathSciNetGoogle Scholar
  4. (4).
    H. H. Hopkins:Proc. Roy. Soc., A208, 263 (1951);217, 408 (1953).MathSciNetADSCrossRefGoogle Scholar
  5. (5).
    E. Wolf:Proc. Roy. Soc., A225, 96 (1954);230, 246 (1955).ADSCrossRefGoogle Scholar
  6. (6).
    G. B. Parrent:Journ. Opt. Soc. Am.,49, 787 (1959).ADSCrossRefGoogle Scholar
  7. (7).
    E. Wolf:Nuovo Cimmto,12, 884 (1954).CrossRefMATHGoogle Scholar
  8. (8).
    P. Roman andE. Wolf:Nuovo Cimento,17, 462 (1960).CrossRefMATHGoogle Scholar
  9. (9).
    B. J. Thompson andE. Wolf:Journ. Opt. Soc. Am.,47, 895 (1957).MathSciNetADSCrossRefGoogle Scholar
  10. (l0).
    J. Bakos andK. Kantor:Nuovo Cimento,22, 519 (1961).CrossRefMATHGoogle Scholar
  11. (11).
    K. Germey:Ann. der Phys.,10, 141 (1962).ADSCrossRefMATHGoogle Scholar
  12. (12).
    R. K. Luneberg:Mathematical Theory of Optics (Providence, 1944), p. 359.Google Scholar
  13. (13).
    M. Born andE. Wolf:Principles of Optics (New York, 1959), Chapter 10.Google Scholar
  14. (14).
    L. Mandel andE. Wolf:Journ. Opt. Soc. Am.,51, 815 (1961).ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica 1963

Authors and Affiliations

  • B. Karczewski
    • 1
  1. 1.Department of Physics and AstronomyUniversity of RochesterRochester

Personalised recommendations