Bulletin of Materials Science

, Volume 22, Issue 3, pp 563–569 | Cite as

Semiconductor quantum dots: Theory and phenomenology

  • Vijay A Singh
  • V Ranjan
  • Manish Kapoor
Smart Structures, Heterostructures And Quantum Dots


Research in semiconductor quantum dots (q-dots) has burgeoned in the past decade. The size (R) of these q-dots ranges from 1 to 100 nm. Based on the theoretical calculations, we propose energy and length scales which help in clarifying the physics of this mesoscopic system. Some of these length scales are: the Bohr exciton radius (αB*), the carrier de Broglie and diffusion length (λD andl D), the polaron radius (αp), and the reduction factor modulating the optical matrix element (M x).RB is an individual particle confinement regime, whereas the larger ones are exciton confinement regime wherein Coulomb interaction play an important role. Similarly a size-dependent dielectric constantε(R) should be used forRpB. An examination ofM x reveals that an indirect gap material q-dot behaves as a direct gap material in the limit of very small dot size. We have carried out effective mass theory (EMT) calculations to estimate the charge density on the surface of the quantum dot. We present tight binding (TB) calculation to show that the energy upshift scales as 1/R x, wherex is less than 2 and the exponent depends on the orientation of the crystallite.


Semiconductor quantum dots confinement tight-binding phenomenology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allan G, Delerue C and Lannoo M 1997aPhys. Rev. Lett. 78 3161CrossRefGoogle Scholar
  2. Allan G, Delerue C and Lannoo M 1997bAppl. Phys. Lett. 71 1189CrossRefGoogle Scholar
  3. Ashoori R C 1996Nature 379 413CrossRefGoogle Scholar
  4. Bhattacharjee A and Guillaume C 1997Phys. Rev. B55 10613Google Scholar
  5. Brus L E 1983J. Chem. Phys. 79 5566CrossRefGoogle Scholar
  6. Brus L E 1986J. Phys. Chem. 90 2555CrossRefGoogle Scholar
  7. Canham L T 1990Appl. Phys. Lett. 57 1046CrossRefGoogle Scholar
  8. Delerue C, Allan G and Lannoo M 1993Phys. Rev. B48 11024Google Scholar
  9. Delerue C, Lannoo M and Allan G 1996Phys. Rev. Lett. 76 3038CrossRefGoogle Scholar
  10. Efros Al L and Efros A L 1982Sov. Phys. Semiconduct. 16 772Google Scholar
  11. Filonov Aet al 1997Appl. Phys. Lett. 70 744CrossRefGoogle Scholar
  12. Hybertsen M S 1992Mater. Res. Soc. Symp. Proc. 256 179Google Scholar
  13. John G C and Singh V A 1995Phys. Rep. 263 93CrossRefGoogle Scholar
  14. Kayanuma Y 1988Phys. Rev. B38 9797Google Scholar
  15. Khurgin J B, Forsythe E W, Tompa G S and Khan B A 1996Appl. Phys. Lett. 69 1241CrossRefGoogle Scholar
  16. Laheld U and Einevoll G 1997Phys. Rev. B55 12311Google Scholar
  17. Lippens P E and Lannoo M 1989Phys. Rev. B39 10935Google Scholar
  18. Menon M and Subbaswamy K 1997Phys. Rev. B55 9231Google Scholar
  19. Nair S V and Takagahara T 1997Phys. Rev. B55 5153Google Scholar
  20. Nair S V, Sinha S and Rustagi K C 1987Phys. Rev. B35 4098Google Scholar
  21. Nomura S and Kobayashi T 1991Solid State Commun. 78 677CrossRefGoogle Scholar
  22. Ramaniah L and Nair S 1993Phys. Rev. B47 7132Google Scholar
  23. Ranjan V and Singh V A 1998 inProc. of the ninth int. workshop on the physics of semiconductor devices (eds) V Kumar and S K Agrawal (London: Narosa) pp 98–101Google Scholar
  24. Ranjan V, Singh Vijay A and John George C 1998Phys. Rev. B58 1158Google Scholar
  25. Sawada S, Hamada N and Ookubo N 1994Phys. Rev. B49 5236Google Scholar
  26. Takagahara T and Takeda K 1992Phys. Rev. B46 15578Google Scholar
  27. Voos Met al 1992Appl. Phys. Lett. 61 1213CrossRefGoogle Scholar
  28. Wang Y and Herron N 1991J. Phys. Chem. 95 525CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 1999

Authors and Affiliations

  • Vijay A Singh
    • 1
  • V Ranjan
    • 1
  • Manish Kapoor
    • 1
    • 2
  1. 1.Physics DepartmentIndian Institute of TechnologyKanpurIndia
  2. 2.Physics DepartmentD.A.V. CollegeKanpurIndia

Personalised recommendations