Advertisement

Il Nuovo Cimento B (1971-1996)

, Volume 111, Issue 7, pp 793–797 | Cite as

Equivalence among the propagators of three-dimensional time-dependent quadratic systems and free particles, by solving the Schrödinger equation

  • J. M. F. Bassalo
Article

Summary

In this article we evaluate Feynman’s propagator exactly for a threedimensional time-dependent quadratic Lagrangian, by solving the Schrödinger equation. Through a rotation and a non-linear superposition law of coordinates, we show that such a propagator can be obtained from thefree- particle propagator in a new space-time coordinate system.

PACS

02.90 Other topics in mathematical methods in physics 

PACS

03.65 Quantum theory quantum mechanics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Feynman R. P. andHibbs A. R.,Quantum Mechanics and Path Integrals (McGraw-Hill Book Company) 1965.Google Scholar
  2. [2]
    Schulman L. S.,Techniques and Applications of Path Integration (John Wiley) 1981.Google Scholar
  3. [3]
    Khandekar D. C. andLawande S. V.,J. Math. Phys.,16 (1975) 384;20 (1979) 1870.ADSCrossRefGoogle Scholar
  4. [4]
    Moreira I.,Lett. Nuovo Cimento,23 (1978) 294.MathSciNetCrossRefGoogle Scholar
  5. [5]
    Jannussis A. D., Brodimas G. N. andStreclas A.,Phys. Lett. A,74 (1979) 6.ADSCrossRefGoogle Scholar
  6. [6]
    Cheng B. K.,Rev. Bras. Fis.,13 (1983) 220, 360;Phys. Lett. A,101 (1984) 464;J. Math. Phys.,25 (1984) 1804;J. Phys. A,17 (1984) 2475;Phys. Lett. A,110 (1985) 347;113 (1985) 293;J. Math. Phys.,27 (1986) 217;Lett. Math. Phys.,14 (1987) 7.Google Scholar
  7. [7]
    Dutra A. S. andCheng B. K.,Phys. Rev. A,39 (1989) 5897.ADSCrossRefGoogle Scholar
  8. [8]
    Kohl H. andDreizler R. M.,Phys. Lett. A,98 (1983) 95;J. Phys. (Paris),45 (1984) c6-35.ADSCrossRefGoogle Scholar
  9. [9]
    Gerry C. C.,J. Math. Phys.,25 (1984) 1820.MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    Dhara A. K. andLawande S. W.,Phys. Rev. A,30 (1984) 560;J. Phys. A,17 (1984) 2423.MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    Khandekar D. C. andLawande S. V.,Phys. Rep.,137 (1986) 116.MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    Nassar A. B.,J. Math. Phys.,27 (1986) 755.MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    Nassar A. B. andBerg R. T.,Phys. Rev. A,34 (1986) 2462.ADSCrossRefGoogle Scholar
  14. [14]
    Nassar A. B., Bassalo J. M. F. andAlencar P. T. S.,Phys. Lett. A,113 (1986) 365.MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    Nassar A. B., Bassalo J. M. F., Antunes Neto H. S. andAlencar P. T. S.,Nuxrvo Cimento A,93 (1986) 195;J. Phys. A,19 (1986) L891.Google Scholar
  16. [16]
    Nassar A. B.,Physica A,141 (1987) 24.MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    Farina De Souza C. andDutra A. S.,Phys. Lett. A,123 (1987) 297.ADSCrossRefGoogle Scholar
  18. [18]
    Bassalo J. M. F., Botelho L. C. L., Antenus Neto H. S. andAlencar P. T. S.,Rev. Bras. Fis.,19 (1989) 598.Google Scholar
  19. [19]
    Bassalo J. M. F.,Essay in Honour of Jayme Tiomno: Frontier Physics (World Scientific) 1991, p. 99.Google Scholar
  20. [20]
    Bassalo J. M. F. andAlencar P. T. S.,Rev. Bras. Ens. Fis.,14 (1992) 16.Google Scholar
  21. [21]
    Nassar A. B., Botelho L. C. L., Bassalo J. M. F. andAlencar P. T. S.,Phys. Scr.,42 (1990) 9.ADSCrossRefGoogle Scholar
  22. [22]
    Cai P. Y., Inomata A. andWang P.,Phys. Lett A,91 (1982) 331.MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    Junker G. andInomata A.,Phys. Lett. A,110 (1985) 195.MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    Burgan J. R., Gutierrez J., Munier A., Fijazkow E. andFeix M. R.,Phys. Lett A,74 (1979) 11.MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    Ray J. R. andReid J. L.,J. Math. Phys.,38 (1981) 91.MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    Bassalo J. M. F. andAlencar P. T. S.,Rev. Bras. Ens. Fis.,15 (1993) 28;Bassalo J. M. F.,Nuovo Cimento B,110 (1995) 23.Google Scholar

Copyright information

© Società Italiana di Fisica 1996

Authors and Affiliations

  • J. M. F. Bassalo
    • 1
  1. 1.Departamento de Física da Universidade Federal do ParáGuamá, Belém, ParáBrasil

Personalised recommendations