Il Nuovo Cimento B (1971-1996)

, Volume 101, Issue 5, pp 607–624 | Cite as

Mass and spin of double dual solutions in Poincaré gauge theory

  • E. W. Mielke
  • R. P. Wallner


Mass and spin are derived for a class of exact solutions of the Poincaré gauge (PG) theory of gravity, provided the curvature fulfills a modified double-duality ansatz. We execute a (3 + l)-decomposition and clarify and simplify the structure of the energy-momentum and spin complexes. In case the quadratic PG Lagrangian contains the curvaturesquare pieces in the Yang-Mills fashion, the (3 + l)-decomposition provides rather detailed information on admissible solutions. The PG energymomentum complex turns out to be intimately related to the von Freud complex of general relativity.


11.15 Gauge field theories 


04.20.Fy Canonical formalism Lagrangians and variational principles 


04.50 Unified field theories and other theories of gravitation 

Масса и спин для двойных дуальных решений в калибровочной теории Пуанкаре


Определяются масса и спин для класса точных решений калибровочной теории Пуанкаре для гравитации. Мы проводим (3 + 1)-разложение и упрощаем структуру энергетически-импул ьсных и спиновых комплексов. В этом случае квадратичный Лагранжиан калибровочной теории Пуанкаре содержит куски с квадратичной кривизной в методе Янга-Миллса, (3 + 1)-разложение обеспечивает довольно подробную информацию о допустимых решениях. Kомплекс энергииимпульса в калибровочной теории Пуанкаре оказывается тесно связанным с комплексом фон Фрейда общей теории относительности.


Si derivano la massa e lo spin per una classe delle soluzioni esatte della teoria di gravità del gauge di Poincaré (PG), purché la curvatura soddisfi un ansatz modifïcato con doppia dualità. Si esegue una decomposizione 3 + 1 e si chiarifica e semplifïca la struttura dell–energia-impulso e i complessi di spin. Nel caso in cui la Lagrangiana PG quadrata contiene le porzioni a curvatura quadrata secondo Yang-Mills, la decomposizione 3 + 1 fornisce informazioni abbastanza dettagliate su soluzioni ammissibili. Il complesso energia-impulso PG risulta essere intimamente connesso con il complesso di von Freud della relativité générale.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    F. W. Hehl:Four lectures on Poincaré gauge field theory, inProceedings of the VI Course on Spin, Torsion, and Supergravity, Erice, Italia, May 1979, edited byP. G. Bergmann andV. de Sabbata (Plenum, New York, N.Y, 1980), p. 5.Google Scholar
  2. (2).
    R. P. Wallner:Gen. Rel. Grav.,17, 1081 (1985).MathSciNetADSCrossRefMATHGoogle Scholar
  3. (3).
    E. W. Mielke:Geometrodynamics of Gauge Fields-On the Geometry of Yang-Mills and Gravitational Gauge Theories (Akademie-Verlag, Berlin, 1987).MATHGoogle Scholar
  4. (4).
    J. D. McCrea:Proceedings of the XIV International Conference on Differential Geometric Methods in Mathematical Physics, Salamanca, 1985, edited byP. L. Garcia andA. Pérez-Rendon,Lecture Notes in Mathematics, Vol.1251 (Springer, Berlin, 1987), p. 222.Google Scholar
  5. (5).
    A. Trautman:Differential Geometry, Symposia Matematica, Vol.XII (Academic Press, London, 1973), p. 139.Google Scholar
  6. (6).
    F. W. Hehl, P. von der Heyde, G. D. Kerlick andJ. P. Nester:Rev. Mod. Phys.,48, 393 (1976).ADSCrossRefGoogle Scholar
  7. (7).
    Y. Choquet-Bruhat:Gravitation and Geometry-A Volume in Honour of Ivor Robinson, edited byW. Rindler andA. Trautman (Bibliopolis, Napoli, 1987), p. 83,Google Scholar
  8. (8).
    P. Baekler, F. W. Hehl andE. W. Mielke: inProceedings of the II Marcel Grossmann Meeting on the Recent Progress of the Fundamentals of General Relativity, edited byR. Ruffini (North-Holland, Amsterdam, 1982) p. 413.Google Scholar
  9. (9).
    E. W. Mielke:J. Math. Phys:(N.Y.),25, 663 (1984);Fortschr.Phys.,32, 639 (1984).MathSciNetADSCrossRefGoogle Scholar
  10. (10).
    R. P. Wallner:Gen. Rel. Grav.,12, 719 (1980).MathSciNetADSCrossRefMATHGoogle Scholar
  11. (11).
    R. P. Wallner:Acta Phys. Austr.,55, 67 (1983).MathSciNetGoogle Scholar
  12. (12).
    P. Baekler andE. W. Mielke:Phys. Lett. A,113, 471 (1986).MathSciNetADSCrossRefGoogle Scholar
  13. (13).
    R. Kuhfuss andJ. Nitsch:Gen. Rel. Grav.,18, 1207 (1986).MathSciNetADSCrossRefGoogle Scholar
  14. (14).
    P. Baekler, F. W. Hehl andE. W. Mielke:Proceedings of the IV Marcel Grossmann Meeting on General Relativity, edited byR. Ruffini (Elsevier Science Publ., Amsterdam, 1986), p. 277.Google Scholar
  15. (15).
    J. D. McCrea, P. Baekler andM. Gürses:Nuovo Cimento B,99, 171 (1987); P.Baekler, M. Gürses, F. W. Hehl andJ. D. McCrea:Phys. Lett. A,128, 245 (1988).ADSCrossRefGoogle Scholar
  16. (16).
    H.-H. Chen, D.-C. Chern, R.-R. Hsu, W. B. Yeung andM.-Q. Chen:Chinese Journal of Physics (Taiwan),24, 115 (1986). (The degeneracy of their particular PG model has been pointed out byJ. D. McCrea, E. W. Mielke andF. W. Hehl:Phys. Lett. A,127, 65 (1988).)ADSGoogle Scholar
  17. (17).
    E. Schrüfer, F. W. Hehl andJ. D. McCrea:Gen. Rel. Grav.,19, 197 (1987).ADSCrossRefMATHGoogle Scholar
  18. (18).
    P. Baekler andM. Gürses:Lett. Math. Phys.,14, 185 (1987).MathSciNetADSCrossRefMATHGoogle Scholar
  19. (19).
    E. P. Wallner:Feldtheorie im Formenkalkül, PhD-thesis, University of Vienna (Wien, 1982).Google Scholar
  20. (20).
    P. Baekler andE. W. Mielke:Fortschr. Phys.,36 (in print).Google Scholar
  21. (21).
    R. P. Wallner:Forms in Field Theory, Lectures given at the Institute of Theoretical Physics, University of Cologne (1987).Google Scholar
  22. (22).
    R. Penrose:Global Riemannian Geometry, edited byT. J. Willmore andN. J. Hitchin (Ellis Horwood Limited, Chichester, 1984), p. 203.Google Scholar
  23. (23).
    W. Thirring:Classical Field Theory, 2nd edition (Springer, New York, N.Y., Wien, 1980).Google Scholar
  24. (24).
    C. W. Misner, K. S. Thorne andJ. A. Wheeler:Gravitation (Freeman, San Francisco, Cal, 1973).Google Scholar
  25. (25).
    R. P. Wallner:Acta Phys. Austr.,54, 165 (1982).MathSciNetGoogle Scholar
  26. (26).
    R. P. Wallner:On Principal Field Theories, University of Cologne preprint (1987).Google Scholar
  27. (27).
    J. Isenberg andJ. Nester:General Relativity and Gravitation, Vol.1, edited byA. Held (Plenum, New York, N.Y., 1980), p. 23.Google Scholar
  28. (28).
    W. Szczyrba:Ann. Phys. (N.Y.),158, 320 (1984).MathSciNetADSCrossRefMATHGoogle Scholar
  29. (29).
    J. Schwinger:Phys. Rev.,130, 1253 (1963).MathSciNetADSCrossRefMATHGoogle Scholar
  30. (30).
    M. J. Bergvelt andE. A. de Kerf:Physica A,139, 125 (1986).ADSCrossRefMATHGoogle Scholar
  31. (31).
    A. Ashtekar:A 3 +1 formulation of Einstein self-duality, inProceedings of the Santa Cruz Conference, edited byJ. Isenberg (Am. Math. Soc, 1988).Google Scholar
  32. (32).
    G.–T Hooft:Nucl. Phys. B,79, 276 (1974).ADSCrossRefGoogle Scholar
  33. (33).
    E. B. Bogolmol–nyi:Sov. J. Nucl. Phys.,24, 449 (1976).Google Scholar
  34. (34).
    E. Cartan andJ. A. Schouten:Proc. Kon. Ned. Akad. (Amsterdam),29, 803 (1926).MATHGoogle Scholar
  35. (35).
    D. Brill:Ann. Phys. (N.Y.),7, 466 (1959).MathSciNetADSCrossRefGoogle Scholar
  36. (36).
    Y. Choquet-Bruhat:Relativity, Groups and Topology II, edited byB. S. De Witt andR. Stora (North-Holland, Amsterdam, 1984), p. 739.Google Scholar
  37. (37).
    E. W. Mielke:Phys. Lett. A,128, 251 (1988).MathSciNetADSCrossRefGoogle Scholar
  38. (38).
    D. Kramee, H. Stephani, E. Heelt andM. A. H. McCallum:Exact Solutions of Einstein–s Field Equations (Cambridge University Press, Cambridge, 1980).Google Scholar
  39. (39).
    K. Hayashi andT. Shieafuji:Prog. Theor. Phys.,73, 54 (1985).ADSCrossRefMATHGoogle Scholar
  40. (40).
    H. Rund andD. Lovelock:Jber. Deutsch. Math.-Verein,74, 1 (1972).MATHGoogle Scholar
  41. (41).
    R. P. Wallner:Acta Phys. Austr.,52, 121 (1980).MathSciNetGoogle Scholar
  42. (42).
    P. Baeklee, R. Hecht, F. W. Hehl andT. Shirafuji:Prog. Theor. Phys.,78, 16 (1987).ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica 1988

Authors and Affiliations

  • E. W. Mielke
    • 1
  • R. P. Wallner
    • 1
  1. 1.Institute for Theoretical PhysicsUniversity of CologneKöln 41Federal Republic of Germany

Personalised recommendations