Lettere al Nuovo Cimento (1971-1985)

, Volume 40, Issue 15, pp 476–480 | Cite as

Supersymmetric fluid in a free one-dimensional motion

  • B. A. Kupershmidt


A free supersymmetric fluid in one-dimensional motion which, in addition to mass, transports s bosonic andr fermionic fields, possessess + 3 noncanonical super-Hamiltonian structuress + 2 of which depend nonlinearly upon the fields variables. To each of theses + r transported fields we associate an infinite series of linear conservation laws; their Poisson brackets do not vanish and, thus, give rise to an infinitedimensional non-Abelian Lie superalgebra of conservation laws. The same results hold true upon (special) relativization, with the Hamiltonian forms and the conservation laws staying form invariant.


03.40 Classical mechanics of continuous media: general mathematical aspects 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    B. Casalbuoni:Nuovo Cimento A,33, 115, 389 (1976).MathSciNetADSCrossRefGoogle Scholar
  2. (2).
    F. A. Berezin andM.S. Marinov:Ann. Phys. (N.T.),104, 336 (1977).ADSCrossRefMATHGoogle Scholar
  3. (3).
    A. Barducci, R. Casalbuoni andL. Lusanna:Nucl. Phys. B,124, 521 (1977);180, 141 (1981).ADSCrossRefGoogle Scholar
  4. (4).
    L. Brink, P. Di Vecchia andP. Howe:Nucl. Phys. B,118, 76 (1977).ADSCrossRefGoogle Scholar
  5. (5).
    G. Senjanović:Phys. Rev. D,16, 307 (1977).ADSCrossRefGoogle Scholar
  6. (6).
    S. Deser, J. H. Kay andK. S. Stelle:Phys. Rev. D,16, 2448 (1977).ADSCrossRefGoogle Scholar
  7. (7).
    Y. Nakano:Prog. Theor. Phys.,63, 599 (1980).ADSCrossRefGoogle Scholar
  8. (8).
    I.E. Dzyaloshinskii andG. E. Volovick:Ann. Phys. (N.T.),125, 67 (1980).MathSciNetADSCrossRefGoogle Scholar
  9. (9).
    D. D. Holm andB. A. Kupershmidt:Phys. Lett. A,91, 425 (1982);Physica D,6, 347 (1983);Phys. Lett. A,93, 177 (1983).MathSciNetADSCrossRefGoogle Scholar
  10. (10).
    J. Gibbons, D. D. Holm andB. A. Kupershmidt:Phys. Lett. A,90, 281 (1982);Physica D,6,179 (1983).MathSciNetADSCrossRefGoogle Scholar
  11. (11).
    D. D. Holm, B. A. Kupershmidt andC. D. Levermore:Phys. Lett. A,98, 389 (1983).MathSciNetADSCrossRefGoogle Scholar
  12. (12).
    D. A. Leites:Russ. Math. Sun,35(1), 3 (1980).MathSciNetGoogle Scholar
  13. (13).
    V.G. Kac:Adv. Math.,26, 8 (1977).CrossRefMATHGoogle Scholar
  14. (14).
    B. A. Kupershmidt:Physica D,7, 334 (1983).MathSciNetADSCrossRefGoogle Scholar
  15. (15).
    B. A. Kupershmidt andYu. I. Manin:Fund. Anal. Appl.,12(1), 20 (1978).MathSciNetCrossRefMATHGoogle Scholar
  16. (16).
    I. Bialynicki-Birula andZ. Iwinski:Rep. Math. Phys.,4(2), 139 (1973).MathSciNetADSCrossRefGoogle Scholar
  17. (17).
    L. D. Landau andE. M. Lifshitz:Fluid Dynamics (Pergamon Press, New York, N.Y., 1974).Google Scholar
  18. (18).
    D.D. Holm andB. A. Kupershmidt:Phys. Lett. A,101, 23 (1984).MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica 1984

Authors and Affiliations

  • B. A. Kupershmidt
    • 1
    • 2
  1. 1.University of Tennessee Space InstituteTullahomaUSA
  2. 2.Center for Nonlinear StudiesLos Alamos National LaboratoryLos AlamosUSA

Personalised recommendations