Advertisement

Bulletin of Materials Science

, Volume 10, Issue 1–2, pp 3–44 | Cite as

Gauge theory of defects in the elastic continuum

  • M C Valsakumar
  • Debendranath Sahoo
Proceedings Of The Discussion Meeting On Physics Of Defects

Abstract

A gauge theory of defects in an elastic continuum is developed after providing the necessary background in continuum elasticity and gauge theories. The gauge group is the three-dimensional (3D) Euclidean group [semi-direct product of the translation group T (3) with the rotation group SO (3)]. We obtainboth dislocations and disclinations by breaking of the translational invariance. Breaking of the rotational invariance is shownnot to lead to any interesting effects in a linear analysis. These results are shown to be consistent with the topological analysis which is briefly discussed at the end of the paper. Any defect given by the present theory acquires acore which removes the singularity of the stress field at the origin. The stress field agrees with the continuum result asymptotically, as is expected. Geometrical aspects of the deformed state of condensed matter are also briefly touched upon.

Keywords

Gauge theory elastic continuum dislocation dislocation density tensor disclination density tensor incompatibility disclination 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abers E and Lee B 1973Phys. Rep. C9 2Google Scholar
  2. Aharanov Y and Bohm D 1959Phys. Rev. 115 485CrossRefGoogle Scholar
  3. Bilby B A, Bullough R and Smith E 1955Proc. R. Soc. (London) A231 263Google Scholar
  4. Chaichian M and Nelipa N F 1984Introduction to gauge field theories (Berlin: Springer-Verlag)Google Scholar
  5. Chambers R G 1960Phys. Rev. Lett. 5 3CrossRefGoogle Scholar
  6. Chela-Flores J 1975J. Low Temp. Phys. 21 307CrossRefGoogle Scholar
  7. De Gennes P 1966Superconductivity of metals and alloys (New York: Benjamin)Google Scholar
  8. de Wit R 1970 in:Fundamental aspects of dislocation theory (eds) J A Simmons, R de Wit and R Bullough (New York: NBS) p 651Google Scholar
  9. de Wit R 1973J. Res. NBS A77 49, 359, 607Google Scholar
  10. Dirac P A M 1931Proc. R. Soc. (London) A133 60CrossRefGoogle Scholar
  11. Dreschsler W and Mayer M E 1977Fibre bundle techniques in gauge theories (Berlin: Springer-Verlag)Google Scholar
  12. Dubrovin B A, Fomenko A T and Novikov S P 1984Modern geometry—methods and applications (Berlin: Springer-Verlag) Vols I and IIGoogle Scholar
  13. Dzyaloshinskii I E 1981 inPhysics of defects (eds) R Balian, M Kleman and J P Poirier (Amsterdam: North Holland) p 320Google Scholar
  14. Dzyaloshinskii I E and Volovik G E 1980Ann. Phys. 125 67CrossRefGoogle Scholar
  15. Eguchi T, Gilkey P B and Hanson A J 1980Phys. Rep. 66 213CrossRefGoogle Scholar
  16. Emch G G 1972Algebraic methods in statistical mechanics and quantum field theory (New York: Wiley)Google Scholar
  17. Eshelby J D 1956Solid state physics (eds) F Seitz and D Turnbull (New York: Academic Press) Vol.3 p 79Google Scholar
  18. Forster D 1975Hydrodynamic fluctuations, broken symmetry and correlation functions (Reading, Mass: Benjamin)Google Scholar
  19. Friedel J 1964Dislocations (Reading, Mass: Addison-Wesley)Google Scholar
  20. Gairola B K D 1981 in:Continuum models of discrete systems (eds) O Brulin and R K T Hsieh (Amsterdam: North-Holland) Vol.4 p 55Google Scholar
  21. Gilmore R 1974Lie groups, lie algebras and some of their applications (New York: John Wiley and Sons)Google Scholar
  22. Higgs P W B 1964Phys. Lett. 12 132Google Scholar
  23. Hilton P J 1953An introduction to homotopy theory (Cambridge: Cambridge University Press)Google Scholar
  24. Hirth J P and Lothe J 1982Theory of dislocations (2nd ed.) (New York: John Wiley and Sons)Google Scholar
  25. Hu S T 1959Homotopy theory (New York: Academic Press)Google Scholar
  26. Itzyksen C and Zuber J 1980Quantum field theory (New York: McGraw Hill)Google Scholar
  27. Julia B and Toulouse G 1979J. Phys. Lett. 40 L395Google Scholar
  28. Kadić A and Edelen D G B 1983A gauge theory of dislocations and disclinations (Berlin: Springer-Verlag)Google Scholar
  29. Kastler D, Loupias G, Mekhbout M and Michel L 1972Commun. Math. Phys. 27 195CrossRefGoogle Scholar
  30. Kawasaki K and Brand H R 1985Ann. Phys. 160 420CrossRefGoogle Scholar
  31. Kerner R 1983Philos. Mag. B47 151Google Scholar
  32. Kondo K 1955RAAG memoirs of the unifying study of basic problems in engineering and physical sciences by means of geometry (Tokyo: Gakujutsu Bunken, Fukyu-Kai) Vol. 1Google Scholar
  33. Kondo K 1962RAAG memoirs of the unifying study of basic problems in engineering and physical sciences by means of geometry (Tokyo: Gakujutsu Bunken, Fukyu-Kai) Vol. 1Google Scholar
  34. Korn G A and Korn T M 1968Mathematical handbook for scientists and engineers (New York: McGraw Hill)Google Scholar
  35. Kroner E 1981 in:Physics of defects (eds) R Balian, M Kleman and J P Poirier (Amsterdam: North Holland) p 219Google Scholar
  36. Kunin I A 1985 in:The mechanics of dislocations (eds) E C Aifantis and J P HirthProc. Int. Symp. Am. Soc. Met. (Ohio: Metals Park) p 69Google Scholar
  37. Mermin N D 1979Rev. Mod. Phys. 51 591CrossRefGoogle Scholar
  38. Michel L 1980Rev. Mod. Phys. 52 617CrossRefGoogle Scholar
  39. Moriyasu K 1983An elementary primer for gauge theory (Singapore: World Scientific)Google Scholar
  40. Nabarro F R N 1979–81Dislocations in solids (Amsterdam: North-Holland) Vol. I–VIGoogle Scholar
  41. Nabarro F R N 1986 (Private Communication)Google Scholar
  42. Nash C and Sen S 1983Topology and geometry for physicists (New York: Academic Press)Google Scholar
  43. Nelson D 1983Phys. Rev. B28 5515Google Scholar
  44. O’Raifeartaigh L 1986Group structure of gauge theories (Cambridge: Cambridge University Press)Google Scholar
  45. Rivier N 1983 in:Topological disorder in condensed matter (eds) F Yonezawa and T Ninomiya (Berlin: Springer-Verlag) p 14 and references cited therein.Google Scholar
  46. Roman P 1975Some modern Mathematics for physicists and other outsiders (New York: Pergamon Press Inc.)Google Scholar
  47. Sahoo D 1984Bull. Mater. Sci. 6 775CrossRefGoogle Scholar
  48. Sethna J P 1985Phys. Rev. B31 6278 and references cited thereinGoogle Scholar
  49. Steenrod N 1970The topology of fibre bundles (Princeton: Princet University Press)Google Scholar
  50. Trebin H R 1982Adv. Phys. 31 195CrossRefGoogle Scholar
  51. Trebin H R 1984Phys. Rev. B30 4338Google Scholar
  52. Venkataraman G and Sahoo D 1986Contemp. Phys. 27 3CrossRefGoogle Scholar
  53. Volovik G E and Mineev V P 1977Sov. Phys. JETP 45 1186 and references cited thereinGoogle Scholar
  54. Wu T T and Yang C N 1969 in:Properties of matter under unusual conditions (eds) H Mark and S Fernbach (New York: Interscience)Google Scholar
  55. Wu T T and Yang C N 1975Phys. Rev. D12 3845Google Scholar

Copyright information

© Indian Academy of Sciences 1988

Authors and Affiliations

  • M C Valsakumar
    • 1
  • Debendranath Sahoo
    • 1
  1. 1.Materials Science LaboratoryIndira Gandhi Centre for Atomic ResearchKalpakkamIndia

Personalised recommendations