Advertisement

La Rivista del Nuovo Cimento (1971-1977)

, Volume 7, Issue 3, pp 419–427 | Cite as

The history of the random-walk problem: considerations on the interdisciplinarity in modern physics

  • B. Carazza
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    This situation has been clearly discussed by Prof.G. Toraldo di Francia in his opening address atColloquium on Interdisciplinary Aspects in Modern Physics, Parma, May 1976.Google Scholar
  2. [2]
    See, for example,K. G. Wilson andJ. Kogut:Phys. Rep.,12, 75 (1974).ADSCrossRefGoogle Scholar
  3. [3]
    K. G. Wilson:Phys. Rev. D,10, 2445 (1974).ADSCrossRefGoogle Scholar
  4. [4]
    On this subject see the lectures byC. Cercignani: inColloquium on Interdisciplinary Aspects in Modern Physics, Parma, May 1976. A very valuable review paper which covers the current status of soliton research, is the one byA. C. Scott, F. Y. F. Chu andD. W. McLaughlin:Proc. I.E.E.E.,61, 1443 (1973). In this paper various applications of wave equations which exhibit « solitons » are shown. Among them we emphasise the sine-Gordon equation, used as a model one-dimensional classical field theory with particlelike solutions:P. J. Caudrey, J. C. Eilbeck andJ. D. Gibbon:Nuovo Cimento,25 B, 497 (1975). We may observe that at the end of the 19th century, smoke rings, which present analogies with solitons, inspired the vortex model of atom (the « elementary particle » of that time). SeeG. P. Guidetti:Giornale di Fisica,17, 102 (1976).Google Scholar
  5. [5]
    K. Pearson:Nature,72, 294 (1905).ADSCrossRefGoogle Scholar
  6. [6]
    LordRayleigh:Nature,72, 318 (1905).ADSCrossRefGoogle Scholar
  7. [7]
    LordRayleigh:Phil. Mag.,10, 73 (1880);47, 246 (1899).CrossRefGoogle Scholar
  8. [8]
    LordRayleigh:Nature,72, 318 (1905).ADSCrossRefGoogle Scholar
  9. [9]
    LordRayleigh:Phil. Mag.,37, 321 (1919).CrossRefGoogle Scholar
  10. [10]
    SeeW. Feller:An Introduction to Probability Theory and its Applications, Vol.1, Chap. 14 (New York, N. Y., 1960).Google Scholar
  11. [11]
    LordRayleigh:Phil. Mag.,10, 73 (1880);47, 246 (1899);37, 321 (1919).CrossRefGoogle Scholar
  12. [12]
    LordRayleigh:Phil. Mag.,37, 323 (1919).MATHGoogle Scholar
  13. [13]
    H. N. V. Temperley:Phys. Rev.,103, 1 (1956). See alsoC. Domb:Adv. Phys.,9, 149 (1960).MathSciNetADSCrossRefMATHGoogle Scholar
  14. [14]
    On this topic see, for example, the review ofC. Domb: inStochastic Processes in Chemical Physics (New York, N. Y., 1969), p. 229.Google Scholar
  15. [15]
    W. Kuhn:Ber. 63, 1503 (1930);Kolloid Zeits.,68, 2 (1934).Google Scholar
  16. [16]
    P. J. Flory:Principles of Polymer Chemistry (Ithaca, N. Y., 1953);Statistical Mechanics of Chain Molecules (New York, N. Y., 1969).Google Scholar
  17. [17]
    P. J. Flory:Principles of Polymer Chemistry (Ithaca, N. Y., 1953);Statistical Mechanics of Chain Molecules (New York, N. Y., 1969).Google Scholar
  18. [18]
    A paper byS. F. Edwards:Proc. Phys. Soc.,85, 613 (1965) which deals with a continuum model represents an advance in this field. See alsoP. G. de Gennes:Phys. Lett.,38 A, 339 (1972);J. des Cloiseaux:Phys. Rev. A,10, 1665 (1974).MathSciNetADSCrossRefMATHGoogle Scholar
  19. [19]
    W. J. C. Orr:Trans. Faraday Soc.,42, 12 (1946)Google Scholar
  20. [20]
    See, for example,M. E. Fisher andB. J. Hiley:Journ. Chem. Phys.,34, 1253 (1961);M. E. Fisher andF. Sykes:Phys. Rev.,114, 45 (1959) and the literature quoted therein.ADSCrossRefGoogle Scholar
  21. [21]
    E. Ising:Zeits. Phys.,31, 253 (1925). For the history of the Lenz-Ising model seeS. G. Brush:Rev. Mod. Phys.,39, 883 (1967).ADSCrossRefGoogle Scholar
  22. [22]
    At a meeting of the New York Academy of Sciences (1942).Google Scholar
  23. [23]
    B. L. Van der Waerden:Zeits. Phys.,118, 473 (1941). See alsoM. Kac andJ. C. Ward:Phys. Rev.,88, 1332 (1952);G. H. Wannier:Rev. Mod. Phys.,17, 50 (1945).ADSCrossRefGoogle Scholar
  24. [24]
    H. N. V. Temperley:Phys. Rev.,103, 1 (1956). See alsoC. Domb:Adv. Phys.,9, 149 (1960).MathSciNetADSCrossRefMATHGoogle Scholar
  25. [25]
    M. E. Fisher andM. F. Sykes:Phys. Rev.,114, 45 (1959).MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    S. G. Brush:Rev. Mod. Phys.,39, 883 (1967).ADSCrossRefGoogle Scholar
  27. [27]
    M. F. Fisher:Rep. Prog. Phys.,30, 615 (1967).ADSCrossRefGoogle Scholar
  28. [28]
    SeeG. F. Newell andE. W. Montroll:Rev. Mod. Phys.,25, 353 (1953).MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    C. N. Yang andT. D. Lee:Phys. Rev.,87, 404 (1952).MathSciNetADSCrossRefMATHGoogle Scholar
  30. [30]
    The self-avoiding walks are also considered for other models of magnetism, besides the Ising one. See, for example,C. Domb:J. Phys. C,3, 256 (1970);R. G. Bowers andA. McKerrel:J. Phys. C,6, 2721 (1973);P. G. de Gennes:Phys. Lett.,38 A, 339 (1972).ADSCrossRefMATHGoogle Scholar
  31. [31]
    J. C. Kluyver:Konink. Akad. Wetenschap. Amsterdam,14, 325 (1905).MATHGoogle Scholar
  32. [32]
    LordRayleigh:Phil. Mag.,37, 321 (1919).CrossRefGoogle Scholar
  33. [33]
    G. N. Watson:A Treatise on the Theory of Bessel Functions (Cambridge, 1958), p. 419.Google Scholar
  34. [34]
    F. G. Tricomi:Funzioni ipergeometriche confluenti (Roma, 1954), p. 266.Google Scholar
  35. [35]
    F. G. Tricomi:Funzioni ipergeometriche confluenti (Roma, 1954), p. 273.Google Scholar
  36. [36]
    A. A. Markoff:Wahrscheinlichkeitsrechnung, sect.16 and33 (Leipzig, 1912).Google Scholar
  37. [37]
    SeeS. Chandrasekhar:Rev. Mod. Phys.,1, 15 (1943).Google Scholar
  38. [38]
    C. W. Harris, R. L. Sells andE. Guth:Journ. Chem. Phys.,21, 1617 (1953).ADSCrossRefGoogle Scholar
  39. [39]
    L. Bahcelier:Calcul des probabilités (Paris, 1912).Google Scholar
  40. [40]
    SeeS. Chandrasekhar:Rev. Mod. Phys.,1, 15 (1943).Google Scholar
  41. [41]
    SeeP. Langevin andM. de Broglie, Editors:La théorie du rayonnement et les quanta, Proceedings of the Solvay Congress, 1911 (Paris, 1912), p. 153.Google Scholar
  42. [42]
    A. Einstein:Ann. der Phys.,17, 549 (1906);19, 371 (1906).ADSGoogle Scholar
  43. [43]
    M. V. Smoluchowski:Ann. der Phys.,21, 756 (1906).CrossRefMATHGoogle Scholar
  44. [44]
    SeeS. G. Brush:Arch. Hist. Exact Sci.,5, 1 (1968/69).MathSciNetCrossRefMATHGoogle Scholar
  45. [45]
    P. J. Flory:Principles of Polymer Chemistry (Ithaca, N. Y., 1953);Statistical Mechanics of Chain Molecules (New York, N. Y., 1969).Google Scholar
  46. [46]
    SeeE. Nelson:Dynamical Theories of Brownian Motion (Princeton, N. J., 1967), sect.15 and the references quoted therein.Google Scholar

Copyright information

© Società Italiana di Fisica 1977

Authors and Affiliations

  • B. Carazza
    • 1
  1. 1.Istituto di Fisica dell’UniversitàParmaItalia

Personalised recommendations