Advertisement

Bulletin of Materials Science

, Volume 17, Issue 7, pp 1215–1232 | Cite as

Positron annihilation spectroscopy in materials science

  • C S Sundar
Article

Abstract

The application of positron annihilation spectroscopy to the study of defects in materials is illustrated through several examples drawn from our work. These include the study of vacancy clustering in metals, clustering of He atoms to form bubbles, and solute clustering in alloys. Results of studies on novel materials such as quasicrystals, cuprate superconductors and fullerenes are also presented.

Keywords

Positron annihilation spectroscopy clustering helium bubbles quasicrystals cuprate superconductors fullerenes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amarendra G 1990Positron annihilation studies of helium in metals and alloys, Ph D thesis, University of Madras, Madras (unpublished)Google Scholar
  2. Amarendra G, Viswanathan B, Bharathi A and Gopinathan K P 1992Phys. Rev. B45 10231Google Scholar
  3. Berko S 1983 inPositron solid state physics (eds.) W Brandt and A Dupasquier (Amsterdam: North-Holland) p. 64Google Scholar
  4. Bharathi A 1988Positron annihilation studies of precipitation in aluminium alloys, Ph D thesis, University of Madras, Madras (unpublished)Google Scholar
  5. Bharathi A and Chakraborty B 1988J. Phys. F. 18 363CrossRefGoogle Scholar
  6. Bharathi A and Sundar C S 1988 inPositron annihilation (eds.) L Dorikens-Vanpraet, M Dorikens and D Segers (Singapore: World Scientific) p. 479Google Scholar
  7. Bharathi A, Sundar C S and Gopinathan K P 1988aPhilos. Mag. 58 705CrossRefGoogle Scholar
  8. Bharathi A, Hariharan Y, Sood A K, Sankara Sastry V, Janawadkar M P and Sundar C S 1988bEurophys. Lett. 6 369CrossRefGoogle Scholar
  9. Bharathi A, Sundar C S and Hariharan Y 1988cJ. Phys.: Condensed Matter 1 1467CrossRefGoogle Scholar
  10. Bharathi A, Sundar C S, Ching W Y, Jean Y C, Hor P H, Xue Y Y and Chu C W 1990Phys. Rev. B42 10199Google Scholar
  11. Bharathi A and Sundar C S 1992Mater. Sci. Forum 105–110 905Google Scholar
  12. Bishop A R, Martin R K, Muller K A and Tesanovic Z 1989Z. Phys. B76 17CrossRefGoogle Scholar
  13. Brandt W and Dupasquier A (eds.) 1983Positron solid state physics (Amsterdam: North-Holland)Google Scholar
  14. Chidambaram R, Sanyal M K, Raghunathan V S, Nambissan P M G and Sen P 1993Phys. Rev. B48 3030Google Scholar
  15. de Fontaine D 1975 inTreatise in solid state chemistry (ed.) N B Hannay (New York: Plenum) vol. 5, p. 129Google Scholar
  16. DiVincenzo D P and Steinhardt P J (eds.) 1991Quasicrystals, The state of art (Singapore: World Scientific)Google Scholar
  17. Donnelly S E and Evans J H (eds.) 1991Proceedings of the NATO Advanced Workshop on Fundamental Aspects of Inert Gases in Solids (New York: Plenum)Google Scholar
  18. Goldman A I and Kelton R F 1993Rev. Mod. Phys. 65 213CrossRefGoogle Scholar
  19. Gopinathan K P and Sundar C S 1984 inMetallic glasses, production, properties and applications (ed.) T R Anantharaman (Switzerland: Trans Tech) p. 115Google Scholar
  20. Gopinathan K P and Rajaraman R 1994 in10th International Conference on Positron Annihilation, Beijing (in print)Google Scholar
  21. Haghighi H, Kaiser J H, Rayner S, West R N, Liu J Z, Shelton R, Howell R H, Solal F and Fluss M J 1991Phys. Rev. Lett. 67 382CrossRefGoogle Scholar
  22. Heiney P E 1992Phys. Chem. Solids 53 1333CrossRefGoogle Scholar
  23. Jean Y C, Wang S J, Nakanishi H, Hardy W N, Hayden M Y, Kiefl R F, Meng R L, Hor P H, Huang Z J and Chu C W 1987Phys. Rev. B36 3994Google Scholar
  24. Jean Y C, Kyle J, Nakanishi H, Turchi P E A, Howell R H, Wachs A L, Fluss M J, Meng R L, Hor P H, Huang Z J and Chu C W 1988Phys. Rev. Lett. 60 1069CrossRefGoogle Scholar
  25. Jean Y C, Sundar C S, Bharathi A, Kyle J, Nakanishi H, Tseng P K, Hor P H, Meng R L, Huang Z J, Chu C W, Wang Z Z, Turchi P E A, Howell R H, Wachs A L and Fluss M J 1990Phys. Rev. Lett. 64 1593CrossRefGoogle Scholar
  26. Jean Y C, Lu X, Lou Y, Bharathi A, Sundar C S, Lyu Y, Hor P H and Chu C W 1992Phys. Rev. B45 12126Google Scholar
  27. Jensen K O and Nieminen R M 1987Phys. Rev. B36 8219Google Scholar
  28. Jorgensen J D 1991Physics Today June 1991 p. 34Google Scholar
  29. Kajcsos Zs and Szeles Cs (eds) 1992Positron annihilation (Switzerland: Trans Tech)Google Scholar
  30. Lou Y, Lu X, Dai G H, Ching W Y, Xu Y N, Huang M Z, Tseng P K, Jean Y C, Meng R L, Hor P H and Chu C W 1992Phys. Rev. B46 2644Google Scholar
  31. Lu X, Wang S J, Sundar C S, Bharathi A, Lyu Y, Ching W Y and Jean Y C 1992Mater. Sci. Forum 105–110 755Google Scholar
  32. Mills A P Jr 1983 inPositron solid state physics (eds.). W Brandt and A Dupasquier (Amsterdam: North-Holland) p. 432Google Scholar
  33. Muller J and Olsen J L (eds.) 1988High temperature superconductors and materials and mechanisms of superconductivity (Amsterdam: North-Holland)Google Scholar
  34. Nieminen R M 1983 inPositron solid state physics (eds.) W Brandt and A Dupasquier (Amsterdam: North-Holland) p. 359Google Scholar
  35. Pickett W E, Krauker H, Cohen R H and Singh D J 1992Science 255 46CrossRefGoogle Scholar
  36. Puska M J and Nieminen R M 1983J. Phys. F 13 333CrossRefGoogle Scholar
  37. Rajaraman R 1993Positron annihilation studies of light impurities in metals, Ph D thesis, University of Madras, Madras (unpublished)Google Scholar
  38. Rajaraman R, Padma Gopalan, Viswanathan B and Venkadesan S 1994aJ. Nucl. Mater. (in print)Google Scholar
  39. Rajaraman R, Viswanathan B, Valsakumar M C and Gopinathan K P 1994bPhys. Rev. B50 (in print)Google Scholar
  40. Schultz P J and Lynn K G 1988Rev. Mod. Phys. 60 701CrossRefGoogle Scholar
  41. Smedskjaer L C and Bansil A 1992J. Phys. Chem. Solids 53 1657CrossRefGoogle Scholar
  42. Sundar C S, Bharathi A and Gopinathan K P 1986 inCurrent trends in the physics of materials (eds.) M Youssouff (Singapore: World Scientific) p. 97Google Scholar
  43. Sundar C S, Bharathi A, Hao L, Jean Y C, Hor P H, Meng R L, Huang Z J and Chu C W 1990a inSuperconductivity and its applications (ed.) H S Kwok (New York: Plenum) p. 335Google Scholar
  44. Sundar C S, Bharathi A, Jean Y C, Hor P H, Meng R L, Huang Z J and Chu C W 1990bPhys. Rev. B41 11685Google Scholar
  45. Sundar C S, Bharathi A, Ching W Y, Jean Y C, Hor P H, Meng R L, Huang Z J and Chu C W 1990cPhys. Rev. B42 2193Google Scholar
  46. Sundar C S and Bharathi A 1991Proc. DAE Solid State Physics Symposium 32A–33A 163Google Scholar
  47. Sundar C S, Chittaranjan C M, Bharathi A, Gopinathan K P and Raghunathan V S 1991aProc. DAE Solid State Physics Symposium 34C 48Google Scholar
  48. Sundar C S, Bharathi A, Vasumathi D and Hariharan Y 1991bProc. DAE Solid State Physics Symposium 33C 176Google Scholar
  49. Sundar C S, Bharathi A, Ching W Y, Jean Y C, Hor P H, Meng R L, Huang Z J and Chu C W 1991cPhys. Rev. B43 13019Google Scholar
  50. Sundar C S, Bharathi A, Vasumathi D and Hariharan Y 1992Mater. Sci. Forum 105–110 1253CrossRefGoogle Scholar
  51. Sundar C S, Bharathi A, Premila M, Padma Gopalan and Hariharan Y 1994 (to be published)Google Scholar
  52. Vasumathi D, Sundar C S, Bharathi A, Sood A K and Hariharan Y 1990Physica C167 149Google Scholar
  53. Viswanathan B 1989J. Phys. Condensed Matter 1 SA71Google Scholar
  54. Viswanathan B and Amarendra G 1990 inPositron annihilation and compton scattering (eds.) B K Sharma, P C Jain and R M Singru (New Delhi: Omega Scientific Publishers) p. 29Google Scholar
  55. Viswanathan B and Amarendra G 1991 inFundamental aspects of inert gases in solids (eds.) S E Donnelly and J H Evans (New York: Plenum) p. 209Google Scholar
  56. West R N 1973Adv. Phys. 22 263CrossRefGoogle Scholar
  57. West R N 1992J. Phys. Chem. Solids 53 1669CrossRefGoogle Scholar

Copyright information

© the Indian Academy of Sciences 1994

Authors and Affiliations

  • C S Sundar
    • 1
  1. 1.Materials Science DivisionIndira Gandhi Centre for Atomic ResearchKalpakkamIndia

Personalised recommendations