Advertisement

Lettere al Nuovo Cimento (1971-1985)

, Volume 43, Issue 4, pp 176–180 | Cite as

Differential-difference equations of the Raman-Nath Type and Schrödinger-like equations with a time-dependent harmonic potential: Exact solutions

  • G. Dattoli
  • A. Dipace
  • G. Fornetti
  • E. Sabia
Article

Summary

In this work we indicate a class of Schrödinger-liko equations with a harmonic potential and time-dependent coefficients which can be solved exactly. The key-point of the technique proposed here is the analysis of a differential-difference equation, known in the literature as harmonic Raman-Nath equation.

PACS

02.30 Function theory analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    T. L. Saaty:Modern Nonlinear Equations (Dover Publ., Now York, N. Y., 1982).MATHGoogle Scholar
  2. (2).
    P. Bosco andG. Dattoli: J. Phys. A,16, 4409 (1983).ADSCrossRefMATHGoogle Scholar
  3. (3).
    G. Dattoli, A. Dipace andE. Sabia: ENEA Report 84.21/P, Frascati (Italy). Submitted for publication.Google Scholar
  4. (4).
    F. Ciocci, G. Dattoli andIt. Richetta:J. Phys. A,17, 1393 (1984);G. Dattoli, M. Ri-chetta andI. Pinto: ENEA Report 83.39/P, Frascati (Italy). Submitted lor publication.MathSciNetCrossRefGoogle Scholar
  5. (5).
    M. V. Fedorov:Sov. Phys. JETP,46, 69 (1977).ADSGoogle Scholar
  6. (6).
    W. Magnus:Commun. Pure Appl. Math.,7, 649 (1954).MathSciNetCrossRefGoogle Scholar
  7. (7).
    J. Wilcox:J. Mam. Phys., (N. F.),8, 962 (1967).MathSciNetADSCrossRefMATHGoogle Scholar
  8. (8).
    N. N. Lebedev:Special Functions and Their Applications (Dover Publ., New York, N. Y. 1972).MATHGoogle Scholar

Copyright information

© Società Italiana di Fisica 1985

Authors and Affiliations

  • G. Dattoli
    • 1
  • A. Dipace
    • 1
  • G. Fornetti
    • 1
  • E. Sabia
    • 1
  1. 1.Dip. TIB, Divisione Fisica ApplicataCentro Ricerche EnergiaFrascati, RomaItalia

Personalised recommendations