Advertisement

Lettere al Nuovo Cimento (1971-1985)

, Volume 44, Issue 8, pp 612–616 | Cite as

Bulk viscosity and the inflationary universe

  • G. Papini
  • M. Weiss
Article

Summary

Phase transitions from a universe with nonnegligible bulk viscosity to an inflationary one are possible only if viscosity virtually disappears in the process. This suggests the phase change involved is of the type normal fluid to superfluid. Some exact solutions of Einstein equations for a viscous fluid are also given. They show the subtle interplay of viscosity and equations of state.

PACS

04.20 General relativity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    S. W. Hawking:Astrophys. J.,145, 544 (1966);C. W. Misner:Astrophys. J.,151, 431 (1968);S. Weinberg:Gravitation and Cosmology (J. Wiley and Sons, New York, N. Y., 1972), p. 469 ff.ADSCrossRefGoogle Scholar
  2. (2).
    W. Israel andJ. N. Vardalas:Lett. Nuovo Cimento,4, 887 (1970).CrossRefGoogle Scholar
  3. (3).
    S. Weinberg:Astrophys. J.,168, 175 (1971). See also N. Straumann:Helv. Phys. Acta,49, 269 (1976).ADSCrossRefGoogle Scholar
  4. (4).
    M. Heller andL. Susztcki:Acta Phys. Pol. B,5, 345 (1974);M. Heller andZ. Klimek:Astrophys. Space Sci.,33, L37 (1975).ADSGoogle Scholar
  5. (5).
    M. Heller, Z. Klimek andL. Susztcki:Astrophys. Space Sci.,20, 205 (1973);M. Szydlowski andM. Heller:Acta Phys. Pol. B,14, 303 (1983);S. R. Rot andO. P. Tiwari:Indian J. Pure Appl. Math.,14, 233 (1983);A. A. Coley andB. O. J. Tupper:Phys. Rev. D,29, 2701 (1984);Astrophys. J.,288, 418 (1985);N. O. Santos,R. S. Dias andA. Banerjee:J. Math. Phys. (N.Y.),26, 878 (1985).ADSCrossRefGoogle Scholar
  6. (6).
    G. E. Tauber:Astrophys. Space Sci.,57, 163 (1978).MathSciNetADSCrossRefGoogle Scholar
  7. (7).
    G. Neugebaubr andH. Strobel: Wissen. Zeitschr. der Friedrich-Schiller-Universität, Jena Jahrg. 18 (1969).Google Scholar
  8. (8).
    R. Treciokas andG. F. R. Ellis:Commun. Math. Phys.,23, 1 (1971).MathSciNetADSCrossRefGoogle Scholar
  9. (9).
    J. D. Nightingale:Astrophys. J.,185, 105 (1973).MathSciNetADSCrossRefGoogle Scholar
  10. (10).
    G. Neugebauer andH. Strobel, ref. (7), assume (1) as equation of state. The same assumption is made throughout this paper.Google Scholar
  11. (11).
    A. H. Guth:Phys. Rev. D,23, 347 (1981).ADSCrossRefGoogle Scholar
  12. (12).
    D. Kramer,H. Stephani,M. MacCallum andE. Herlt:Exact solutions of Einstein field equations, VEB Deutscher Verlag der Wissenschatten (Berlin, 1980), p. 166.Google Scholar
  13. (13).
    S. Weinberg:Gravitation and Cosmology (J. Wiley and Sons, New York, N. Y., 1972), p. 469 ffGoogle Scholar
  14. (14).
    G. Papini andM. Weiss:Phys. Lett. A,89, 329 (1982);Lett. Nuovo Cimento 44, 83, (1985).MathSciNetADSCrossRefGoogle Scholar
  15. (15).
    G. F. R. Ellis:Relativistic cosmology, inProc. S.I.F., Course XLVII (Academic Press, New York, N. Y., 1971).Google Scholar
  16. (16).
    B. L. Hu:Phys. Lett. A,90, 375 (1982).ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica 1985

Authors and Affiliations

  • G. Papini
    • 1
  • M. Weiss
    • 1
  1. 1.Department of Physics and AstronomyUniversity of BeginaReginaCanada

Personalised recommendations