Lettere al Nuovo Cimento (1971-1985)

, Volume 44, Issue 5, pp 270–274 | Cite as

A statistical mechanical approach to the mass density fluctuations between 1 eV >T > 1 eV in the early universe



A rigorous, nonperturbative, statistical mechanical approach is being proposed to calculate the mass-density fluctuations in the cosmological context. The analysis done here applies to an era shortly before radiation-matter decoupling. The expression for δϱ/ϱ indicates that such fluctuations increase in a complicated fashion as the universe expands.


98.80 Cosmology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    S. Weinberg:Gravitation and Cosmology, Chapt. 15, Sect. 8 (Wiley, New York, N. Y., 1972).Google Scholar
  2. (2).
    H. Sato andF. Takahara:Prog. Theor. Phys.,64, 2029 (1980);66, 508 (1981).ADSCrossRefGoogle Scholar
  3. (3).
    J. R. Bond, G. Efstathiou andJ. Silk:Phys. Rev. Lett,45, 1980 (1980).ADSCrossRefGoogle Scholar
  4. (4).
    H. Kodama andM. Sasaki:Prog. Theor. Phys. Suppl.,78, 81 (1984).CrossRefGoogle Scholar
  5. (5).
    F. Wilczek:Foundations and working pictures, inThe Very Early Universe, edited byG. W. Gibbons, S. W. Hawking andS. T. C. Siklos (Cambridge, 1983).Google Scholar
  6. (6).
    R. A. Sack:Mol. Phys.,2, 8 (1959).MathSciNetADSCrossRefGoogle Scholar
  7. (7).
    A. Münster:Statistische Thermodynamik (Springer, Berlin, 1956).Google Scholar
  8. (8).
    I. Prigogine:Physica (Utrecht),16, 133 (1950).ADSCrossRefGoogle Scholar
  9. (9).
    G. S. Rushbrooke andH. D. Ursell:Proc. Cambridge Philos. Soc,44, 263 (1947).MathSciNetADSCrossRefGoogle Scholar
  10. (10).
    H. C. Longuet-Higgins:Mol. Phys.,1, 83 (1958).ADSCrossRefGoogle Scholar
  11. (11).
    T. L. Hill:Statistical Mechanics (McGraw-Hill, New York, N. Y., 1956).Google Scholar
  12. (12).
    J. L. Lebowitz, J. K. Percus andL. Verlet:Phys. Rev.,153, 250 (1967).ADSCrossRefGoogle Scholar
  13. (13).
    A. K. Raychaudhuri:Theoretical Cosmology (Clarendon Press, Oxford, 1979).MATHGoogle Scholar
  14. (14).
    J. M. Haile andH. W. Graben:Mol. Phys.,40, No. 6, 1433 (1980).ADSCrossRefGoogle Scholar
  15. (15).
    L. D. Landau andE. M. Lifshitz:Classical Theory of Fields, 4th Edition (Pergamon Press, Oxford, 1980).Google Scholar

Copyright information

© Società Italiana di Fisica 1985

Authors and Affiliations

  • S. Sen
    • 1
  1. 1.Department of Physics and AstronomyGlemson UniversityClemsonUSA

Personalised recommendations