Advertisement

Bulletin of Materials Science

, Volume 22, Issue 1, pp 37–47 | Cite as

Comparative study of zirconia-mullite and alumina-zirconia composites

  • N C Biswas
  • S P Chaudhuri
Composites

Abstract

Several zirconia-mullite and alumina-zirconia composites were prepared and their physical, chemical, mechanical and thermal properties determined. The phase assemblage, size of ZrO2 crystals and microstructure of the composites were ascertained. This paper embodies a comparison of the alumina-zirconia and zirconia-mullite composites with respect to their properties and also the constitution-property relationships between each group of composites. Alumina-zirconia composites (AZ) were found to be superior to zirconia-mullite composites (prepared through ZMS or ZMC route) in almost all respects. Thermal-shock resistance and hydration resistance of the clay-based zirconia-mullite (ZMC) composites and alumina-zirconia (AZ) composites were almost at par.

Keywords

Composites zirconia-mullite alumina-zirconia thermomechanical and chemical properties constitution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arul Dhas N and Patil K C 1994Ceram. Int. 20 57CrossRefGoogle Scholar
  2. Asokan T 1994J. Mater. Sci. Lett. 13 343CrossRefGoogle Scholar
  3. Becher P F 1994 inMaterials science and technology (ed.) M V Swain (Weinheim: VCH) vol.11, p. 410Google Scholar
  4. Biswas N C and Chaudhuri S P 1997Ceram. Int. 23 69CrossRefGoogle Scholar
  5. Claussen N and Jahn J 1980J. Am. Ceram. Soc. 63 228CrossRefGoogle Scholar
  6. Den Exter P, Leuwerink T H P, Bos A, Winnbust A J A, Doesburg E B M and Burggraff A J 1989 inEuroceram (eds) G De With, R A Terpstra and R Metselaar (New York: Elseiver) vol.1, p. 1.89Google Scholar
  7. Di Rupo E, Gilbert E, Carruthers T G and Brooke R J 1979J. Mater. Sci. 14 705CrossRefGoogle Scholar
  8. Endo T, Miyagawa N, Takizawa H and Shimada M 1994J. Mater. Sci. 29 2395CrossRefGoogle Scholar
  9. Esper F J, Friese K H and Geier H 1984 inAdvances in ceramics (eds) N Claussen, M Rühle and A H Heuer (Columbus, Ohio: The American Ceramic Society) vol.12, p. 528Google Scholar
  10. Garvie R C 1984 inAdvances in ceramics (eds) N Claussen, M Rühle and A H Heuer (Columbus, Ohio: The American Ceramic Society) vol.12, p. 465Google Scholar
  11. Grigorev Oet al 1991 inCeramics today—Tomorrow’s ceramics (ed.) P Vincenzini (Amsterdam: Elsevier) vol.66, p. 2821Google Scholar
  12. Hirano M 1992Br. Ceram. Trans. J. 91 139Google Scholar
  13. Hirano M and Inada H 1990Br. Ceram. Trans. J. 89 214Google Scholar
  14. Hirano M and Indad H 1991Br. Ceram. Trans. J. 90 48Google Scholar
  15. Hori S, Kurita R, Yoshimura M and Sömiya S 1988 inAdvances in ceramics (eds) S Sōmiya, N Yamamoto and H Yanagida (Westerville, Ohio: The American Ceramic Society) vol.24, p. 423Google Scholar
  16. Hwang C S, Tsaur S C and Chang Y-J 1994J. Ceram. Soc. Jap. 102 1111Google Scholar
  17. Jones F W 1938Proc. R. Soc. A16 16Google Scholar
  18. Klug H P and Alexander L E 1954X-ray diffraction procedures for crystalline and amorphous materials (New York: John Wiley and Sons) p. 390Google Scholar
  19. Koyama T, Hayashi S, Yasumori A and Okada K 1994J. Eur. Ceram. Soc. 14 295CrossRefGoogle Scholar
  20. Kubota Y and Takagi H 1988 inAdvances in ceramics (eds) S Sōmiya, N Yamamoto and H Yanagida (Westerville, Ohio: The American Ceramic Society) vol.24, p. 999Google Scholar
  21. Lange F F and Hirlinger M M 1987J. Am. Ceram. Soc. 70 827CrossRefGoogle Scholar
  22. Lee H L and Hong G G 1994J. Am. Ceram. Soc. Lett. 13 469Google Scholar
  23. Leriche A, Moortgat G, Cambier F, Homerin P, Thevenot F, Orange G and Fantozzi F 1988 inAdvances in ceramics (eds) S Sōmiya, N Yamamoto and H Yanagida (Westerville, Ohio: The American Ceramic Society) vol.24, p. 1033Google Scholar
  24. Mitra B L, Banerjee M K, Biswas N C and Aggarwal P S 1985Trans. Ind. Ceram. Soc. 44 33Google Scholar
  25. Mitra B L, Biswas N C and Aggarwal P S 1992aMater. Lett. 14 50CrossRefGoogle Scholar
  26. Mitra B L, Biswas N C and Aggarwal P S 1992bBull. Mater. Sci. 15 131CrossRefGoogle Scholar
  27. Mitra B L, Biswas N C and Aggarwal P S 1989aBull. Mater. Sci. 12 457Google Scholar
  28. Mitra B L, Biswas N C and Aggarwal P S 1989bTrans. Ind. Ceram. Soc. 48 15Google Scholar
  29. Orange G, Fantozzi G, Homerin P, Thevenot F, Leriche A and Cambier F 1988 inAdvances in ceramics (eds) S Sōmiya, N Yamamoto and H Yanagida (Westerville, Ohio: The American Ceramic Society) vol.24, p. 1075Google Scholar
  30. Orlova I G, Gudilina A I and Drizheruk M E 1981Inorg. Mater. 17 1474Google Scholar
  31. Rundgren K, Elfving P, Pompe R, Lagerlof K P D and Larsson B 1988 inAdvances in ceramics (eds) S Sōmiya, N Yamamoto and H Yanagida (Westerville, Ohio: The American Ceramic Society) vol.24, p. 1043Google Scholar
  32. Schüller K-H 1964Trans. Br. Ceram. Soc. 63 103Google Scholar
  33. Srikrishna K, Thomas G and Moya J S 1988 inAdvances in ceramics (eds) S Sōmiya, N Yamamoto and H Yanagida (Westerville, Ohio: The American Ceramic Society) vol.24, p. 277Google Scholar
  34. Stead R J, Kop A and O’Connor B H 1991 inInt. ceram. conf. Austceram 90 (eds) P J Darragh and R J Stead (New York: Trans Tech Publications) p. 160Google Scholar
  35. Tsukuma T and Takahata T 1987 inMater. res. sym. proc. (eds) P F Becher, M V Swain and S Sōmiya (Pittsburgh, Pennsylvania: Materials Research Society) vol.78, p. 165Google Scholar
  36. Yuan L J and Yen T S 1992J. Am. Ceram. Soc. 75 2576CrossRefGoogle Scholar
  37. Zangvil A, Lin C C and Ruh R 1992J. Am. Ceram. Soc. 75 1254CrossRefGoogle Scholar
  38. Zografou C, Von Mallinckrodt D and Schule P 1986J. Phys. C1 Suppl. 2 47 429Google Scholar

Copyright information

© Indian Academy of Sciences 1999

Authors and Affiliations

  • N C Biswas
    • 1
  • S P Chaudhuri
    • 1
  1. 1.Special Ceramics SectionCentral Glass and Ceramic Research InstituteCalcuttaIndia

Personalised recommendations