Advertisement

Bulletin of Materials Science

, Volume 22, Issue 7, pp 1067–1072 | Cite as

Thermal treatment of the precipitated solid material (PSM) from the waste black liquor (WBL)

  • A M A Nada
  • E M A Hamzawy
  • H I Omara
  • S El Gohary
Waste Management
  • 49 Downloads

Abstract

Preciptated solid materials (PSM) from waste black liquor (WBL), at pH 8·5–9·0, produced from cooking of rice straw in paper mill factories were thermally treated. The cooking process led to decrease in organic material and partial substitution in silica structure. During this cooking process, three probable stages of mass loss comprise removal of moisture, volatile release, and combustion.

The chemical analysis depicts the cooking effect on leaching either the high percentage elements (Ca, Na, and K) or some metallic cations (Mn, Cd, Zn and Cu) in the parent rice straw. Silica hydrate, amorphous silica and crystalline silica were obtained at <600°C, 600–700°C and at>800°C, respectively. The infrared spectra show gradual removal of the hydrocarbon bond (C–H), molecular H2O, and sianol group (Si-OH) with temperature. TG, DTA, XRD and SEM were used in this study.

Keywords

Waste materials silica transformation silica 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartha P and Huppertz A 1974Proceeding rice-byprod. (Util. Int. Gent. Valencia)Google Scholar
  2. Benesi H A and Jones A C 1959J. Phys. Chem. 63 179CrossRefGoogle Scholar
  3. Chakraverty A, Mishra P and Banerjee H D 1988J. Mater. Sci. 23 21CrossRefGoogle Scholar
  4. Chakraverty A, Mishra P and Banerjee H D 1985Thermochim. Acta 94 267CrossRefGoogle Scholar
  5. Frondel C 1979Am. Min. 64 799Google Scholar
  6. Gadsden J A 1975 inThe infrared spectra of minerals and related inorganic compounds (Boston: Butterworth)Google Scholar
  7. Houston D F 1972 (St. Paul: The American Association of Cereal Chemists) MN 301Google Scholar
  8. Howard A G and Statham P J 1994 inInorganic trace analysis philosophy and practice (London: Wiley)Google Scholar
  9. Hunt L H, Dismukes J P, Amick J A, Schee A and Larsen K 1984J. Electrochim. Soc. 131 1683CrossRefGoogle Scholar
  10. Ibrahim D M, El-Hemaly S A and Abdel-Kerim F M 1980Thermochim. Acta 37 307CrossRefGoogle Scholar
  11. Iler R K 1964J. Colloid. Sci. 19 648CrossRefGoogle Scholar
  12. James J and Subba Rao M 1986Thermochim. Acta 97 329CrossRefGoogle Scholar
  13. Jones J B and Segnit E R 1971J. Geol. Soc. Aust. 18 57Google Scholar
  14. Krishnarao R V, Godkhindi M M, Mukunda P G I and Chakraverty A 1991J. Am. Ceram. Soc. 74 2869CrossRefGoogle Scholar
  15. McDonald R S 1958J. Phys. Chem. 2 1168CrossRefGoogle Scholar
  16. Moenke H H W 1974 inThe infrared spectra of minerals (UK: The Mineralogical Society of London)Google Scholar
  17. Pouchert C J 1981 inThe Aldrich library of infrared spectra (Milwaukee: Aldrich Chemical Company)Google Scholar
  18. Real C, Maria D A and Jose M C 1996J. Am. Ceram. Soc. 79 2112CrossRefGoogle Scholar
  19. Roy D M and Roy R 1964Am. Min. 49 952Google Scholar
  20. Volv M B 1990 inTechnical approach to glass (New York: Elsevier Science)Google Scholar

Copyright information

© the Indian Academy of Sciences 1999

Authors and Affiliations

  • A M A Nada
    • 1
  • E M A Hamzawy
    • 1
    • 2
  • H I Omara
    • 1
    • 2
  • S El Gohary
    • 1
    • 2
  1. 1.Cellulose and Paper DepartmentNational Research CentreDokki, CairoEgypt
  2. 2.Glass Research DepartmentNational Research CentreDikki, CairoEgypt

Personalised recommendations