Advertisement

Bulletin of Materials Science

, Volume 22, Issue 2, pp 133–137 | Cite as

Design and fabrication of liquid phase epitaxy system

  • R Venkataraghavan
  • N K Udayashankar
  • Blasius Victor Rodrigues
  • K S R K Rao
  • H L Bhat
Instrumentation

Abstract

The design and fabrication of a simple and versatile liquid phase epitaxial (LPE) system has been described. The present LPE system makes use of the horizontal multi-bin boat and slider arrangement which enables the growth of even multilayered structures. The growth chamber is heated by a single-zone resistive furnace precisely controlled through a Eurotherm 902P temperature programmer and controller. The vacuum manifolds and accessories are set up in such a way as to ensure high vacuum needed for growth experiments. The provision is also made to admit high purity gases like hydrogen or nitrogen into the growth chamber. The design has been kept simple without sacrificing the versatility and adaptability for novel growth experiments. The typical films grown by this LPE system are also presented.

Keywords

Liquid phase epitaxy multi-bin boat indium antimonide surface morphology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Astles M G 1990 inLiquid-phase epitaxial growth of III–V compound semiconductors (Bristol: IOP. Pub. Ltd)Google Scholar
  2. Choi H K and Eglash S J 1991IEEE J. Quantum Electron. QE-27 1555CrossRefGoogle Scholar
  3. Choi Y H, Besikci C, Sudharsanan R and Razeghi M 1991Appl. Phys. Lett. 63 361CrossRefGoogle Scholar
  4. Choi Y H, Staveteig P T, Bigan E and Razeghi M 1994J. Appl. Phys. 75 6Google Scholar
  5. Dawson L R 1972 inProgress in solid state chemistry (Oxford: Pergamon Press)Google Scholar
  6. Ejeckman F E, Seaford M L, Lo Y H, Hou H Q and Hammons B E 1997Appl. Phys. Lett. 71 776CrossRefGoogle Scholar
  7. Golube L V, Egorov A V, Novikov S V and Shmartsev Yu V 1995J. Cryst. Growth 146 277CrossRefGoogle Scholar
  8. Holmes D E and Kamath G S 1980J. Electronic Mater. 9 95CrossRefGoogle Scholar
  9. Hsieh J J, Rossi J A and Donelly J P 1976Appl. Phys. Lett. 28 709CrossRefGoogle Scholar
  10. Kumagawa M, Witt A F, Lichtensteiger M and Gatos H C 1973J. Electrochem. Soc. 120 58CrossRefGoogle Scholar
  11. Kuphal E 1991Appl. Phys. A52 380Google Scholar
  12. Liu W K, Winesett J, Ma W, Zhang X, Santosh M B, Fang X N and McCann J 1977J. Appl. Phys. 81 1708CrossRefGoogle Scholar
  13. Martinelli R U and Zamerowski T 1990Appl. Phys. Lett. 56 125CrossRefGoogle Scholar
  14. Menna R J, Capewell D R, Martinelli R U, York P K and Enstrom R E 1991Appl. Phys. Lett. 59 2127CrossRefGoogle Scholar
  15. Nelson H 1963RCA Rev. 24 603Google Scholar
  16. Panish M B, Hayashi I and Sumuski S 1970Appl. Phys. Lett. 16 326CrossRefGoogle Scholar
  17. Srivastava A K, DeWinter J C, Caneau C, Pollack M A and Zyskind J L 1986Appl. Phys. Lett. 48 903CrossRefGoogle Scholar
  18. Udayashankar N K, Venkataraghavan R, Nirmal Kumar and Bhat H L 1999Phys. Status Solidi (communicated)Google Scholar

Copyright information

© Indian Academy of Sciences 1999

Authors and Affiliations

  • R Venkataraghavan
    • 1
  • N K Udayashankar
    • 1
  • Blasius Victor Rodrigues
    • 1
  • K S R K Rao
    • 1
  • H L Bhat
    • 1
  1. 1.Department of PhysicsIndian Institute of ScienceBangaloreIndia

Personalised recommendations