Bulletin of Materials Science

, Volume 22, Issue 5, pp 877–884 | Cite as

Computational condensed matter physics

  • B K Godwal
India-Japan Seminar On Computational Materials Science, October 1998, Bangalore


In the high pressure laboratory at BARC, we are pursuing a program to study the behaviour of materials under static and dynamic pressures. Theoretical component has been an integral part for guiding and interpreting new experiments. The initial phase of such efforts was devoted to the development of equation of state models at arbitrary temperatures and matter densities. With the advent of diamond anvil cell device and the simultaneous provision for laser heating of the compressed samples for static high pressure studies, and with the improvements of the diagnostic techniques in dynamic shock methods, the focus of our studies switched over to the predictions and interpretations of phase transitions. Often these efforts have led to intense experimental studies and sometimes helped in resolving the controversies in data. We adopted the first principles electronic structure calculations for high pressure studies. Our work on the electronic topological transition in zinc led to many experimental and theoretical investigations. The results of electronic structure changes in similar metal cadmium shall be compared with existing understanding in Zn under pressure. Our studies on Nb and other compounds like intermetallics and borocarbides have revealed interesting electronic structure changes under pressure. However, the electronic structure based investigations of structural stabilities at high pressures involve tedious trial and error effort, which is avoided in theab initio molecular dynamics simulations. The current status of our efforts in the use of this technique is illustrated with the example of quasicrystal based clusters.


Pressure electronic topological transition equation of state 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akahama Y, Kobayashi M and Kawamura H 1991 inRecent trends in high pressure research (ed.) A K Singh (New York: Interscience) p. 131Google Scholar
  2. Alleno E, Neumeier J J, Thompson J D, Canfield P C and Cho B K 1995Physica C229 169Google Scholar
  3. Anderson J R, Papaconstantopoulos D A and Schirber J E 1981Phys. Rev. B24 6790Google Scholar
  4. Andersen O K 1975Phys. Rev. B12 3060Google Scholar
  5. Andersen O K and Jepsen O 1984Phys. Rev. Lett. 53 2571CrossRefGoogle Scholar
  6. Bachelet G B, Hamann D R and Schluter M 1982Phys. Rev. B26 4199Google Scholar
  7. Car R and Parrinello M 1985Phys. Rev. Lett. 55 2471CrossRefGoogle Scholar
  8. Cava R Jet al 1994Nature 367 252CrossRefGoogle Scholar
  9. Chidambaram R 1996J. Indian Inst. Sci. 76 437Google Scholar
  10. Chidambaram R 1999 (to be published)Google Scholar
  11. Christensen N E 1985Phys. Rev. B32 207Google Scholar
  12. Dagens L 1978J. Phys. F Metal Phys. 8 2093CrossRefGoogle Scholar
  13. Descotes L and Bichara C 1995J. Non-cryst. Solids 192–193 627CrossRefGoogle Scholar
  14. Fast L, Ahuja R, Nordstrom L, Wills J M, Johansson B and Eriksson O 1997Phys. Rev. Lett. 79 2301CrossRefGoogle Scholar
  15. Focher P, Chiarotti G L, Bernasconi M, Tosatti E and Parrinello M 1994Europhys. Lett. 36 345CrossRefGoogle Scholar
  16. Godwal B K 1983Phys. Rev. A28 1103Google Scholar
  17. Godwal B K 1995aCurr. Sci. 68 1087Google Scholar
  18. Godwal B K 1995bFrom astronomy to astrophysics (eds) B Sinha and M Bhattacharya (Calcutta: Saha Institute of Nuclear Physics) p. 85Google Scholar
  19. Godwal B K, Ng A and Dasilva L 1990Phys. Lett. A144 26Google Scholar
  20. Godwal B K, Sikka S K and Chidambaram R 1979Phys. Rev. B20 2362Google Scholar
  21. Godwal B K, Sikka S K and Chidambaram R 1981Phys. Rev. Lett. 47 1144CrossRefGoogle Scholar
  22. Godwal B K, Sikka S K and Chidambaram R 1983Phys. Rep. 102 121CrossRefGoogle Scholar
  23. Godwal B K, Jayaraman A, Meenakshi S, Rao R S, Sikka S K and Vijayakumar V 1997aPhys. Rev. B56 14871Google Scholar
  24. Godwal B K, Rao R S, Sikka S K and Chidambaram R 1997b inAdvances in high pressure research in condensed matter (eds) S K Sikka, S C Gupta and B K Godwal (New Delhi: Natl. Inst. of Sci. Commun.) p. 45Google Scholar
  25. Godwal B K, Meenakshi S and Rao R S 1997cPhys. Rev. B56 14871Google Scholar
  26. Guryan C A, Stephens P W, Goldman A I and Gayle F W 1988Phys. Rev. B37 8495Google Scholar
  27. Hedin L and Lundquist B I 1971J. Phys. C4 2064Google Scholar
  28. Hedin L and Lundquist B I 1972J. Phys. C5 1629Google Scholar
  29. Henley C L and Elser V 1986Philos. Mag. B53 L59Google Scholar
  30. Jagadeesh B S, Rao R S and Godwal B K 1996 inHigh performance computing (eds) S Sahni, V K Prasanna and V P Bhatkar (New Delhi: Tata McGraw-Hill) p. 175Google Scholar
  31. Jayaraman A 1983Rev. Mod. Phys. 55 65CrossRefGoogle Scholar
  32. Jeanloz R 1987J. Geophys. Res. 92 10352Google Scholar
  33. Johansson B, Ahuja R, Eriksson O and Wills J M 1995Phys. Rev. Lett. 75 280CrossRefGoogle Scholar
  34. Kagan Yu, Pushkarev V V and Holas A 1983Zh. Eksp. Teor. Fiz. 84 1494 (Sov. Phys. JETP 57 870)Google Scholar
  35. Kinslow R (ed.) 1970High velocity impact phenomena (NY: Academic Press)Google Scholar
  36. Kirkpatrick S, Gelatt G D Jr. and Vecchi M P 1983Science 220 671CrossRefGoogle Scholar
  37. Klotz S, Braden M and Besson J M 1998Phys. Rev. Lett. 81 1239CrossRefGoogle Scholar
  38. Koehnlein D 1968Z. Phys. 208 142CrossRefGoogle Scholar
  39. Kohn W 1959Phys. Rev. Lett. 2 393CrossRefGoogle Scholar
  40. Kohn W and Sham L J 1965Phys. Rev. 140 A1133Google Scholar
  41. Lifshitz I M 1960Sov. Phys. JETP 11 1130 [J. Expt. Theor. Phys. 38 1569]Google Scholar
  42. Lynch R W and Drickamer H G 1965J. Phys. Chem. Solids 26 63CrossRefGoogle Scholar
  43. Mao H K and Hemley R 1994Rev. Mod. Phys. 66 671CrossRefGoogle Scholar
  44. Mattheiss L F 1970Phys. Rev. B1 373Google Scholar
  45. Mattheiss L F, Siegrist T and Cava R J 1994Solid State Commun. 91 587CrossRefGoogle Scholar
  46. Mazumdar C, Nagarajan R and Godart C 1993Solid State Commun. 87 413CrossRefGoogle Scholar
  47. McCarthy S L 1965 Lawrence Livermore Laboratory Report UCRL p. 4364Google Scholar
  48. Meenakshi S, Vijayakumar V, Godwal B K and Sikka S K 1992Phys. Rev. 46 14359CrossRefGoogle Scholar
  49. Meenakshi S, Vijayakumar V, Godwal B K, Sikka S K, Hossain Z, Nagarajan R, Gupta L C and Vijayaraghavan R 1996Physica B223 & 224 93Google Scholar
  50. Meenakshi Set al 1998Phys. Rev. B58 3377Google Scholar
  51. Methfessel M 1988Phys. Rev. B38 1537Google Scholar
  52. Morgan J G, Von Dreele R B, Wochner P and Shapiro S M 1996Phys. Rev. B54 812Google Scholar
  53. Nagarajan Ret al 1994Phys. Rev. Lett. 72 274CrossRefGoogle Scholar
  54. Novikov D L, Freeman A J, Christensen N E, Svane A and Rodriguez C O 1997Phys. Rev. B56 7206Google Scholar
  55. Palanivel B, Rao R S and Godwal B K 1999 (to be published)Google Scholar
  56. Pearson M, Smargiassi E and Madden P A 1993J. Phys. Condens. Matter 5 3221CrossRefGoogle Scholar
  57. Perdue J P, Burke K and Ernzerhof M 1996Phys. Rev. Lett. 77 3865CrossRefGoogle Scholar
  58. Potzel W, Steiner M, Karzel H, Schiessl W, Kofferlein M, Kalvius G M and Blaha P 1995Phys. Rev. Lett. 74 1139CrossRefGoogle Scholar
  59. Rao R S, Godwal B K and Sikka S K 1992Phys. Rev. B46 5780Google Scholar
  60. Rao R S, Godwal B K and Sikka S K 1994Phys. Rev. B50 15632Google Scholar
  61. Rose J H, Smith J R, Guinea F and Ferrante J 1984Phys. Rev. B29 2963Google Scholar
  62. Rouse C A (ed.) 1971Prog. high temp. phys. and chem. (New York and London: Pergamon Press) Vol.4, p. 139Google Scholar
  63. Schmidt H and Braun H F 1994Physica C229 315Google Scholar
  64. Schulte O, Nikolaenko A and Holzapfel W B 1991High Pressure Res. 6 169CrossRefGoogle Scholar
  65. Shah V, Nehete D and Kanhere D G 1994J. Phys.: Condens. Matter 6 10773CrossRefGoogle Scholar
  66. Sikka S K, Godwal B K and Chidambaram R 1997 inHigh pressure shock compression of condensed matter (eds) Davison and Sahinpoor (New York, Berlin, Heidelberg: Springer Verlag) p. 1Google Scholar
  67. Sikka S K 1988Phys. Rev. B38 8463Google Scholar
  68. Skriver H L 1984The LMTO method (Berlin: Springer)Google Scholar
  69. Smargiassi E and Madden P A 1994Phys. Rev. B49 5220Google Scholar
  70. Steiner M, Potzel W, Karzel H, Schiessl W, Kfferlein M, Kalvius G M and Blaha P 1996J. Phys.: Condens. Matter 8 3581CrossRefGoogle Scholar
  71. Storm A R, Wernick J H and Jayaraman A 1996J. Phys. Chem. Solids 27 1227CrossRefGoogle Scholar
  72. Struzhkin V V, Timofeev Y A, Hemley R J and Mao H 1997Phys. Rev. Lett. 21 4262CrossRefGoogle Scholar
  73. Takemura K 1995Phys. Rev. Lett. 75 1807CrossRefGoogle Scholar
  74. Takemura K 1997Phys. Rev. B56 5170Google Scholar
  75. Vijayakumar V, Rao R S and Godwal B K 1997 inAdvances in high pressure research in condensed matter (eds) S K Sikka, S C Gupta and B K Godwal (New Delhi: Natl. Inst. of Sci. Commun.) p. 318Google Scholar
  76. Vohra Y K and Akella J 1991Phys. Rev. Lett. 67 3563CrossRefGoogle Scholar
  77. Vohra Y K and Holzapfel W B 1993High Pressure Res. 11 223CrossRefGoogle Scholar
  78. Volkov A P, Voloshin N P, Vladimira A S, Nogin V N and Simonenko V A 1980Pls’ma Zh. Eksp. Teor. Fiz. 31 623;JETP Lett. 31 588 (1980)Google Scholar
  79. Wills J M and Cooper B R 1987Phys. Rev. B36 3809Google Scholar
  80. Zel’dovich Ya B and Raizer Yu P 1967Physics of shock waves and high temperature hydrodynamic phenomena (New York: Academic Press) Vols 1 & 2Google Scholar

Copyright information

© Indian Academy of Sciences 1999

Authors and Affiliations

  • B K Godwal
    • 1
  1. 1.Condensed Matter Physics DivisionBhabha Atomic Research CentreMumbaiIndia

Personalised recommendations