Advertisement

Bulletin of Materials Science

, Volume 18, Issue 1, pp 53–60 | Cite as

Glass formation domains and structural properties of nonconventional transition metal ion glasses

Seminar On “Recent Trends In Glass And Glass-Ceramics Research”

Abstract

Glass formation domains and structural properties of some binary transition metal ion glasses based on nonconventional network formers Bi2O3 and PbO have been investigated. With the same network former, the glass formation domains depend on the transition metal ions. Homogeneous glasses with random network structure were obtained, as evidenced by the composition dependent density, molar volume and glass transition temperatures. Significant information about possible structural units in these glasses has been obtained from the IR spectra of these glasses.

Keywords

Glass formation domain transition metal nonconventional glass glass transition temperature molar volume density IR spectra 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aegerter M, Serra E, Rodingnes A, Kordas G and Moore G 1990 SPIE-Sol-Gel optics, 1328, 361Google Scholar
  2. Bishay A and Maghrabi C 1969Phys. Chem. Glasses 10 1Google Scholar
  3. Dimitriev Y, Mihailov V and Gatif E 1986Phys. Chem. Glasses 34 114Google Scholar
  4. Dimitriev Y, Dimitrov V, Arnaudov M and Topalov D 1983J. Non-Cryst. Solids 57 147CrossRefGoogle Scholar
  5. Dumbaugh W H 1978Phys. Chem. Glasses 19 21Google Scholar
  6. Dumbaugh W H 1986Phys. Chem. Glasses 27 119Google Scholar
  7. Fajans K and Kreidl N 1948J. Am. Ceram. Soc. 31 105CrossRefGoogle Scholar
  8. Ghosh A 1987Preparation and characterization of some semiconducting glasses from the studies of various physical properties, Ph D. Thesis, Jadavpur University, CalcuttaGoogle Scholar
  9. Ghosh A 1988J. Appl. Phys. 64 2652CrossRefGoogle Scholar
  10. Hazra S and Ghosh A 1995Phys. Rev. B50 Google Scholar
  11. Livage J, Jolivet J P and Tronc E 1990J. Non-Cryst. Solids 121 35CrossRefGoogle Scholar
  12. Mandal S and Ghosh A 1993Phys. Rev. B48 9388Google Scholar
  13. Mandal S, Hazra S and Ghosh A 1994J. Mater. Sci. Lett. 13 1054CrossRefGoogle Scholar
  14. Mandal S, Hazra S, Das D and Ghosh A 1995J. Non-Cryst. Solids (in print)Google Scholar
  15. Mianxve W and Peinan Z 1986J. Non-Cryst. Solids 84 334Google Scholar
  16. Morikawa H, Jegondez J, Mazieres C and Revolevschi A 1981J. Non-Cryst. Solids 44 107CrossRefGoogle Scholar
  17. Nakamura S and Ichinose N 1987J. Non-Cryst. Solids 95–96 849CrossRefGoogle Scholar
  18. Onisi M, Kyoto M and Watanabe M 1991Jpn. J. Appl. Phys. 30 L988Google Scholar
  19. Kao K J, Wong J and Rao B G 1984Phys. Chem. Glasses 25 57Google Scholar
  20. Sakuri Y and Yamaki J 1990J. Electrochem. Soc. 132 512CrossRefGoogle Scholar
  21. Tanaka K, Kamiya K and Yoko T 1989J. Non-Cryst. Solids 109 289CrossRefGoogle Scholar
  22. Takahashi Y and Yamaguchi K 1990J. Mater. Sci. 25 3950CrossRefGoogle Scholar
  23. Tatsumisago M, Tsuboi S, Tohge N and Minami T 1990J. Non-Cryst. Solids 124 167CrossRefGoogle Scholar
  24. Yuan L Ret al 1991Jpn. J. Appl. Phys. 30 L1545Google Scholar
  25. Zheng H and Mackenzie J D 1988Phys. Rev. B38 7166Google Scholar
  26. Zheng H, Xu R and Mackenzie J D 1989J. Mater. Res. 4 911CrossRefGoogle Scholar

Copyright information

© the Indian Academy of Sciences 1995

Authors and Affiliations

  • A Ghosh
    • 1
  1. 1.Solid State Physics DepartmentIndian Association for the Cultivation of ScienceCalcuttaIndia

Personalised recommendations