Bulletin of Materials Science

, Volume 20, Issue 5, pp 651–665 | Cite as

Application of electroreflectance analysis for organic semiconductor thin films

  • Francis P Xavier


Many organic semiconductors with conjugate bond structure possess photoconductivity. Conduction mechanism of organic materials exhibits ‘dualism’ since both intramolecular as well as inter-molecular aspects are involved in the excitation, absorption and transport of charge carriers. Modulation spectroscopy promises to be the most accurate method for analysis of organic photoconductors, especially of thin films. In this technique a periodic perturbation is applied to the material under study and the effect of the perturbation is separated from reflection or absorption while scanning through a given wavelength range by use of lock-in phase sensitive detection method. In electromodulation, particularly in electrolyte electromodulation, the applied field on the material produces changes in the dielectric function which corresponds to the change in reflectance. When the applied field is low the line-shape of spectrum is third-derivative like in comparison with the unmodulated reflectance spectrum. Using Aspnes three-point method the transitions corresponding to critical points can be determined. When the field is intermediate Franz-Keldysh oscillations, which are dc bias dependent, appear on the higher energy side of the transition energy from which the role of intra-molecular as well as intermolecular aspects in conduction mechanism can be understood and the carrier concentration could be determined. Though the electroreflectance method has been developed for inorganic semiconductors, it could be effectively applied for organic/molecular semiconductors as well if the constituent molecules are assumed to be the lattices. The study of organic photoconductors is very important since they are more and more promising especially in photocopying, photovoltaic and solar cells.


Electroreflectance Franz-Keldysh oscillations phthalocyanine 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aoyagi Yet al 1971J. Phys. Soc. Jap. 31 164CrossRefGoogle Scholar
  2. Arulselvi A and Xavier F P 1996 unpublishedGoogle Scholar
  3. Aspnes D E 1966Phys. Rev. 147 554CrossRefGoogle Scholar
  4. Aspnes D E 1972Phys. Rev. B5 4022Google Scholar
  5. Aspnes D E 1973Surf. Sci. 37 418CrossRefGoogle Scholar
  6. Aspnes D E 1974Phys. Rev. B10 4228Google Scholar
  7. Aspnes D E 1980 Modulation spectroscopy/electric field effects on the dielectric function of semiconductors, inHandbook on semiconductors (ed) M Balkanski (Amsterdam: North-Holland) Vol. 2Google Scholar
  8. Aspnes D E and Studna A A 1973Phys. Rev. B7 4605Google Scholar
  9. Aspnes D Eet al 1968Phys. Rev. 166 921CrossRefGoogle Scholar
  10. Aspnes D Eet al 1972Phys. Rev. B5 4022Google Scholar
  11. Aviksoo J and Reinot T 1992Mol. Cryst. Liq. Cryst. 217 147CrossRefGoogle Scholar
  12. Baughman R Het al 1977J. Chem. Phys. 66 401CrossRefGoogle Scholar
  13. Blinov L Met al 1970Sov. Phys.-Solid State 12 1246Google Scholar
  14. Bordas J 1976 Some aspects of modulation spectroscopy in layer materials, inOptical and electrical properties (ed.) P A Lee (Dordrecht-Holland: Reidel)Google Scholar
  15. Bube R H 1992Photoelectronic properties of semiconductors (Cambridge: Cambridge University Press)Google Scholar
  16. Callaway J 1963Phys. Rev. 130 549CrossRefGoogle Scholar
  17. Cardona M, Shaklee K L and Pollak F H 1967Phys. Rev. 154 696CrossRefGoogle Scholar
  18. Chamberlain G A 1983Solar Cells 8 47CrossRefGoogle Scholar
  19. Eley D D 1989Mol. Cryst. Liq. Cryst. 171 1CrossRefGoogle Scholar
  20. Evans B L 1976 Optical properties of layer compounds, inOptical and electrical properties (ed) P A Lee, (Dordrecht-Holland: Reidel)Google Scholar
  21. Franz W 1958Z. Naturforsch. a13 484Google Scholar
  22. Gamo Ket al 1968J. Phys. Soc. 25 431CrossRefGoogle Scholar
  23. Glembocki O J, Bottka N and Furneaux J E 1985J. Appl. Phys. 57 432CrossRefGoogle Scholar
  24. Gutmann F and Lyons L E 1981Organic semiconductors (Part A) (Malabar: Krieger)Google Scholar
  25. Heilmeier G Het al 1963J. Chem. Phys. 38 163CrossRefGoogle Scholar
  26. Herman M H 1990Proc. Soc. Photo-Optical Instrum. Eng. 39 1286Google Scholar
  27. Hsu Cet al 1974J. Chem. Phys. 61 4640CrossRefGoogle Scholar
  28. Inabe T, Marks T J, Burton R L, Lyding J W, McCarthy W J, Kannewurf C N, Reisner G M and Herbstein F H 1985Solid State Commun. 54 501CrossRefGoogle Scholar
  29. Inokuchi H 1989Mol. Cryst. Liq. Cryst. 171 23CrossRefGoogle Scholar
  30. Kanemitsu Yet al 1991J. Appl. Phys. 69 7333CrossRefGoogle Scholar
  31. Karl N 1989Mol. Cryst. Liq. Cryst. 171 31CrossRefGoogle Scholar
  32. Keldysh L V 1958Sov. Phys. JETP 34 788Google Scholar
  33. Kivelson Set al 1983Phys. Rev. B28 7236Google Scholar
  34. Minami Net al 1987Jap. J. Appl. Phys. 26 1754CrossRefGoogle Scholar
  35. Mort J and Pai D M 1976Photoconductivity and related phenomena (New York: Elsevier)Google Scholar
  36. Moser F H and Thomas A L 1963Phthalocyanine compounds (New York: Reinhold)Google Scholar
  37. Orti Eet al 1988J. Chem. Phys. 89 1009CrossRefGoogle Scholar
  38. Orti Eet al 1990J. Chem. Phys. 92 1228CrossRefGoogle Scholar
  39. Pankove J I 1971Optical processes in semiconductors (Dover: New York)Google Scholar
  40. Pollak F and Shen H 1993Mater. Sci. Eng. R10 275Google Scholar
  41. Poras H 1993Optical and electro-optical properties of epitaxial GaAs deposited on a semi-insulating GaAs substrate, PhD thesis, Boston College, USAGoogle Scholar
  42. Qian R 1989Mol. Cryst. Liq. Cryst. 171 117CrossRefGoogle Scholar
  43. Robertson M 1935J. Chem. Soc. 615Google Scholar
  44. Robertson M 1936J. Chem. Soc. 1195Google Scholar
  45. Seraphin B Oet al 1966Phys. Rev. 145 628CrossRefGoogle Scholar
  46. Simon J and André J-J 1985Molecular semiconductors (Berlin: Springer)Google Scholar
  47. Schoch K Fet al 1988J. Vac. Sci. Technol. A6 155Google Scholar
  48. Streetman B G 1980Solid state electronic devices (Englewood Cliffs: Prentice-Hall)Google Scholar
  49. Tanaka Tet al 1983J. Chem. Phys. 44 1069Google Scholar
  50. Tharmalingham K 1963Phys. Rev. 130 2204CrossRefGoogle Scholar
  51. Tokura Y, Koda T, Iyechika Y and Kuroda H 1983Chem. Phys. Letts. 102 174CrossRefGoogle Scholar
  52. Weigl J W 1977Angew. Chemie Int. Edn. 16 374CrossRefGoogle Scholar
  53. Wright J D 1989Molecular crystals (Cambridge: Cambridge University Press)Google Scholar
  54. Wrighton M S 1979Acc. Chem. Res. 12 303CrossRefGoogle Scholar
  55. Xavier F P 1993Optical and transport properties of phthalocyanine and related compounds (Ann Arbor: UMI)Google Scholar
  56. Xavier F P and Goldsmith G J 1995Bull. Mater. Sci. 18 269, 277Google Scholar
  57. Xavier F P and Pragasam J 1996Conducting polymers (Madras: Loyola College Publications)Google Scholar

Copyright information

© the Indian Academy of Sciences 1997

Authors and Affiliations

  • Francis P Xavier
    • 1
  1. 1.Loyola Institute of Frontier EnergyLoyola CollegeChennaiIndia

Personalised recommendations