Advertisement

Bulletin of Materials Science

, Volume 20, Issue 8, pp 1069–1077 | Cite as

Effect of heavy-ion irradiation on dielectric constant and electrical conductivity of doped and undoped nonlinear substance

  • K Somashekhara Udupa
  • P Mohan Rao
  • Sriramana Aithal
  • A P Bhat
  • D K Avasthi
Article

Abstract

Implantations were carried out on gel-grown potassium dihydrogen orthophosphate (KDP) and those doped with magnesium oxide (MgO) single crystals using 100 MeV Ag+ heavy-ion beam of 15 UD 16 MV pelletron accelerator. To conduct a comparative study, measurements were carried out in the temperature range 243 K-403 K at frequencies ranging from 1 kHz-1 MHz on irradiated and nonirradiated nonlinear samples. It was observed that the mechanism of dielectric behaviour varied with frequency, temperature and ion irradiation. Further, implantation produced erratic variation in the conductivity both in the intrinsic and extrinsic regions, and also in the dielectric behaviour of the substance. The property of sensitive dependence on initial conditions, namely, chaos had set in after ion irradiation. However, the doping effect had not completely terminated the above transition, leading to chaos in the nonlinear medium.

Keywords

KDP heavy-ion irradiation implantation dielectric constant electrical conductivity nonlinear crystal property of sensitive dependence chaos 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold G W and Bordas J A 1977J. Appl. Phys. 48 1483CrossRefGoogle Scholar
  2. Arnold G W and Peercy P S 1989Non. Cryst. Solids 41 359CrossRefGoogle Scholar
  3. Arnold G W, Battaglin G, Della Mea G and Miotella A 1988aNucl. Instrum. & Meth. B32 315CrossRefGoogle Scholar
  4. Arnold G W, Carnera A and Mazzoldi P 1988bLaser and particle beam chemical processing for microelectronics (eds) D J Ehrlich, G S Higasiu and M M Oprysko (Pittsburgh: Materials Research Society) p. 453Google Scholar
  5. Benoit B Mandelbrot 1982The fractal geometry of nature (San Francisco: Freeman)Google Scholar
  6. George A W 1989Nucl. Instrum. & Meth. Phys. Res. B39 708Google Scholar
  7. Glasser 1975Chem. Rev. 75 21CrossRefGoogle Scholar
  8. Gulick D 1992Encounters with chaos (New York: McGraw Hill)Google Scholar
  9. Govinda S and Rao K V 1975Phys. Status Solidi 27 639CrossRefGoogle Scholar
  10. Jackel J L and Rice C E 1984Proc. SPIE 460 43Google Scholar
  11. Mazzoldi P and Miolello A 1986Radiat. Eff. 98 39CrossRefGoogle Scholar
  12. Nadru J M and Wiss B L 1988J. Light wave Technol. LT-4,B32 315Google Scholar
  13. Rao K V and Smakula A A 1965J. Appl. Phys. 36 2031CrossRefGoogle Scholar
  14. Robert May 1976Nature 261 985CrossRefGoogle Scholar
  15. Suryanarayana P, Acharya H N and Rao K 1984J. Mater. Sci. Lett. 3 21CrossRefGoogle Scholar
  16. Wagner G and Hantemann P 1950J. Chem. Phys. 18 72CrossRefGoogle Scholar

Copyright information

© the Indian Academy of Sciences 1997

Authors and Affiliations

  • K Somashekhara Udupa
    • 1
  • P Mohan Rao
    • 1
    • 2
  • Sriramana Aithal
    • 1
    • 3
  • A P Bhat
    • 1
    • 4
  • D K Avasthi
    • 1
    • 5
  1. 1.Department of PhysicsBhandarkar’s CollegeKundapurIndia
  2. 2.Department of PhysicsMangalore UniversityMangalagangotriIndia
  3. 3.Department of ElectronicsNASM CollegeNitteIndia
  4. 4.Department of PhysicsPoornaprajna CollegeUdupiIndia
  5. 5.Nuclear Science CentreAruna Asaf Ali MargNew DelhiIndia

Personalised recommendations