Advertisement

Bulletin of Materials Science

, Volume 21, Issue 3, pp 203–206 | Cite as

Phase diagram and thermochemical properties of organic eutectic in a monotectic system

  • U S Rai
  • R N Rai
Article
  • 116 Downloads

Abstract

The phase diagram of a binary organic system involving diphenyl and succinonitrile shows the formation of a eutectic (0·968 mole fraction of succinonitrile) and a monotectic (0·074 mole fraction of succinonitrile) with a large miscibility gap in the system, the upper consolute temperature being 53·5°C above the monotectic horizontal. From the enthalpy of fusion of the pure components, the eutectic and the monotectic, determined by the DSC method, the enthalpy of mixing, Jackson’s roughness parameter, interfacial energy, size of the critical nucleus and excess thermodynamic functions were calculated.

Keywords

Phase diagram monotectic system thermochemistry organic eutectic organic monotectic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Christian J W 1965The theory of phase transformations in metals and alloys (Oxford: Pergamon Press)Google Scholar
  2. Ecker A, Frazier D O and Alexander J I D 1989Metall. Trans. A20 2517Google Scholar
  3. Elliott R 1977Int. Met. Rev. 22 161Google Scholar
  4. Elliott R 1983Eutectic solidifcation processing (London: Butterworths)Google Scholar
  5. Favite G 1996J. Cryst. Growth 166 29CrossRefGoogle Scholar
  6. Glazer J 1995Int. Mater. Rev. 40 65Google Scholar
  7. Glicksman M E, Singh N B and Chopra M 1983Manufacturing in Space 11 207Google Scholar
  8. Grugel R N and Poorman R 1989Mater. Sci. Forum 50 89CrossRefGoogle Scholar
  9. Herlach D M, Cochrane R F, Egry I, Fecht H J and Greer A L 1993Int. Mater. Rev. 38 273Google Scholar
  10. Rai U S and Mandal K D 1990Mol. Cryst. Liq. Cryst. 182 387CrossRefGoogle Scholar
  11. Rai U S and Shekhar H 1994Cryst. Res. Technol. 29 551CrossRefGoogle Scholar
  12. Rai U S and George S 1996J. Thermal Anal. 46 1809CrossRefGoogle Scholar
  13. Rai U S and Rai R N 1996Thermochim. Acta 277 209CrossRefGoogle Scholar
  14. Rai U S, Singh O P, Singh N P and Singh N B 1983Thermochim. Acta 71 373CrossRefGoogle Scholar
  15. Rai U S, Singh O P and Singh N B 1987Can. J. Chem. 65 2639CrossRefGoogle Scholar
  16. Rzyman K, Moser Z, Watson R E and Weinert M 1996J. Phase Equilibria 17 173CrossRefGoogle Scholar
  17. Sangster J 1994J. Phys. Chem. Ref. Data 23 295CrossRefGoogle Scholar
  18. Singh N B 1978Acta Ciencia Indica 4 4Google Scholar
  19. Singh N, Singh N B, Rai U S and Singh O P 1985Thermochim. Acta 95 291CrossRefGoogle Scholar
  20. Trivedi R and Kurz W 1994Int. Mater. Rev. 39 49Google Scholar
  21. Wisniak J and Tamir A 1978Mixing and excess thermodynamic properties (A literature source book), inPhys. Sci. Data (New York: Elsevier)Google Scholar
  22. Yasuda H, Ohnaka I, Matsunaga Y and Shiohara Y 1996J. Cryst. Growth 156 128CrossRefGoogle Scholar

Copyright information

© the Indian Academy of Sciences 1998

Authors and Affiliations

  • U S Rai
    • 1
  • R N Rai
    • 1
  1. 1.Department of ChemistryBanaras Hindu UniversityVaranasiIndia

Personalised recommendations