Bulletin of Materials Science

, Volume 20, Issue 7, pp 1015–1021 | Cite as

Composition dependence of electrical properties of Al-Sb thin films

  • P S Nikam
  • R Y Borse
  • R R Pawar


Thin films of Al-Sb of varying compositions and thickness have been formed on glass substrates employing three-temperature method. Electrical resistivity (ρ) and activation energy (ΔE) have been studied as a function of composition, thickness (d) and temperature of the film. Films of Al-Sb system with aluminium < 50 at.%, ∼ 50 at.% and > 50 at.% exhibit metallic, semiconducting and metallic to semiconducting behaviours respectively. Activation energy (ΔE) of semiconducting films found to vary inversely with thickness, is attributed to combined effects of change in barrier height due to the size of grains and stoichiometry in the films.


Three-temperature method electrical resistivity temperature coefficient of resistance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Charlot G 1964Colorimetric determination of elements (Amsterdam: Elsevier)Google Scholar
  2. Chopra K L 1969Thin film phenomena (New York: McGraw Hill)Google Scholar
  3. Das V D and Karunakaran D 1989Phys. Rev. B39 10872Google Scholar
  4. Francombe M H, Noreika A J, Zeitman S A and Johnson J E 1976Thin Solid Films 32 259CrossRefGoogle Scholar
  5. George J and Palson T I 1985Thin Solid Films 127 233CrossRefGoogle Scholar
  6. Johnson J E 1965J. Appl. Phys. 36 3193CrossRefGoogle Scholar
  7. Kushida M, Iwamoto M and Hino T 1993Jpn J. Appl. Phys. 32 4709CrossRefGoogle Scholar
  8. Lefebvre P, Gill B, Allegre J, Mathieu H, Chen Y and Raisin C 1987Phys. Rev. B35 1230Google Scholar
  9. Matare H F 1971Defect electronics in semiconductor (New York: Wiley) p. 158, 292Google Scholar
  10. Matsuo K H and Soma T 1986Phys. Status Solidi b134 K105,138 K13Google Scholar
  11. Matsuo K H and Soma T 1987Solid State Commun. 62 707CrossRefGoogle Scholar
  12. Mattes B 1984Elements of materials science and engineering (ed.) Van Vlack (Amsterdam: Addison Wesley Pub. Co. Inc.) 5th ed.Google Scholar
  13. Nasledov D N and Slobadechikov S V 1958Zh. Tekh Fiz 28 715Google Scholar
  14. Nikam P S and Pawar R R 1990Bull. Mater. Sci. 13 343CrossRefGoogle Scholar
  15. Nikam P S and Pawar R R 1991aIndian J. Pure Appl. Phys. 29 263Google Scholar
  16. Nikam P S and Pawar R R 1991bPramana—J. Phys. 36 629Google Scholar
  17. Nikam P S and Aher H S 1993Indian J. Pure Appl. Phys. 31 79Google Scholar
  18. Nikam P S and Aher H S 1994Bull. Mater. Sci. 17 41CrossRefGoogle Scholar
  19. Nikam P S and Aher H S 1996Indian J. Pure Appl. Phys. 34 393Google Scholar
  20. Pandit A K, Ansari T H, Singh R A and Wanklyn B M 1991Mater. Lett. 11 52CrossRefGoogle Scholar
  21. Patel S M and Biradar A M 1983Indian J. Pure Appl. Phys. 21 418Google Scholar
  22. Raisin C, Lassabatere L, Alibert C, Birault B, Abdel Fattah G and Voisin P 1987Solid State Commun. 61 17CrossRefGoogle Scholar
  23. Rittner E S 1954Phys. Rev. 96 1708CrossRefGoogle Scholar
  24. Sandomirskii V B 1963Sov. Phys. JETP 16 1630Google Scholar
  25. Sandomirskii V B 1967Sov. Phys. JETP 25 101Google Scholar
  26. Slater J C 1956Phys. Rev. 103 1631CrossRefGoogle Scholar
  27. Uen T M, Haung K F, Chen M S and Gou Y S 1988Thin Solid Films 158 69CrossRefGoogle Scholar
  28. Upadhyay H M, Singh D P and Chandra S 1986Proceedings of the sixth national seminar on semiconductor and devices (Calcutta: IACS) p. 26Google Scholar
  29. Willardson R K, Beer A C and Middleton A E 1953Phys. Rev. 91 243Google Scholar
  30. Yee J H, Swierkowski S P and Sherohman J W 1977IEEE Trans. Nucl. Sci. (USA) 24 1962CrossRefGoogle Scholar

Copyright information

© The Indian Academy of Sciences 1997

Authors and Affiliations

  • P S Nikam
    • 1
  • R Y Borse
    • 1
    • 2
  • R R Pawar
    • 1
  1. 1.PG Department of Physical ChemistryM S G CollegeMalegaon CampIndia
  2. 2.Department of PhysicsM S G CollegeMalegaon CampIndia

Personalised recommendations