Atomistic simulation of epitaxial interfaces and polytypes

  • G P Das


In this paper we discuss howab initio local density electronic structure calculations can be used to investigate extended defects such as interfaces and polytypes. LMTO-supercell calculations have been performed to understand the nature of bonding in epitaxial metal/ceramic interfaces such as Ag/MgO(001) and Ti/MgO(001). Cohesive and electronic properties of hexagonal polytypes of diamond, with different stacking sequences, have been predicted for the first time and compared with the available experimental data. The relative stabilities of 4H, 6H and 8H diamond polytypes have been calculated using a generalized version of force theorem.


Electronic structure force theorem metal/ceramic interface diamond polytypes 


  1. Andersen O K 1975Phys. Rev. B12 3060Google Scholar
  2. Andersen O K and Jepsen O 1984Phys. Rev. Lett. 53 2571CrossRefGoogle Scholar
  3. Andersen O K, Skriver H L, Nohl H and Johanson B 1979Pure Appl. Chem. 52 93CrossRefGoogle Scholar
  4. Andersen O K, Jepsen O and Sob M 1987 inElectronic band structure and its applications (ed.) M Yussouff (Berlin: Springer Verlag) p. 1Google Scholar
  5. Blöchl P, Das G P, Fischmeister H and Schönberger U 1990 inMetal-ceramic interfaces (eds) M Rühleet al (Oxford: Pergamon Press) p. 35Google Scholar
  6. Brown W L (ed.) 1990 See for e.g. the collection of articles in the special issue on “Diamond like Carbon”;J. Mater. Res. 5 2273–2609Google Scholar
  7. Bundy F P and Kasper J S 1967J. Chem. Phys. 46 3437CrossRefGoogle Scholar
  8. Crampin S, Hampel K, Vvedensky D D and MacLaren J M 1990J. Mater. Res. 5 2107CrossRefGoogle Scholar
  9. Das G P 1992Pramana — J. Phys. 38 545Google Scholar
  10. Das G P 1994 inLectures on methods of electronic structure calculations (eds) V Kumar, O K Andersen and A Mookerjee (Singapore: World Scientific) p. 279Google Scholar
  11. de Hosson J Th M 1980 inInteratomic potentials and crystalline defects (ed.) J K Lee (Pittsburgh: The Metallurgical Society of AIME) p. 3Google Scholar
  12. Ernst F, Finnis M W, Hofmann D, Muschik T, Schönberger U, Wolf U and Methfessel M 1992Phys. Rev. Lett. 69 620CrossRefGoogle Scholar
  13. Finnis M 1993Phys. World 6 37Google Scholar
  14. Freeman A J and Wimmer E 1995Annu. Rev. Mater. Sci. 25 7CrossRefGoogle Scholar
  15. Frenklach M, Krematick R, Huang D, Howard W, Spear K E, Phelps A W and Koba R 1989J. Appl. Phys. 66 395CrossRefGoogle Scholar
  16. Grimes R W, Harker A H and Lidiard A B (eds) 1996Interatomic potentials; Philos. Mag. 73 1–199Google Scholar
  17. Heine V 1980 inSolid state physics (eds) H Ehrenreich, F Seitz and D Turnbull (New York: Academic Press) Vol. 35, p. 1 (A detailed argument and derivation of force theorem is given in pp 114–120)Google Scholar
  18. Horsfield A 1996Philos. Mag. B73 85Google Scholar
  19. Lambrecht W R L and Segal B 1989 inInterfaces in metal — ceramic composites-Part II (eds) R Y Yinet al (Warrendale: The Minerals, Metals and Materials Society) p. 319Google Scholar
  20. Lurie P G and Wilson J M 1977Surf. Sci. 65 476CrossRefGoogle Scholar
  21. Mackintosh A R and Andersen O K 1980 inElectrons at Fermi surface (ed.) M Springford (New York: Cambridge Univ. Press) p. 149 (Force theorem is discussed on pp 187–193)Google Scholar
  22. Nielsen O H and Martin R M 1985Phys. Rev. B32 3780Google Scholar
  23. Nguyen Manh D, Bratkovsky A M and Pettifor D G 1995Philos. Trans. R. Soc. London A351 529CrossRefGoogle Scholar
  24. Pettifor D G 1989Phys. Rev. Lett. 63 2480CrossRefGoogle Scholar
  25. Pettifor D G and Cottrell A H (eds) 1992Electron theory in alloy design (London: The Institute of Materials); see articles by D G Pettifor and A T PaxtonGoogle Scholar
  26. Salehpour M R and Satpathy S 1990Phys. Rev. B41 3048Google Scholar
  27. Salunke H G, Sharma A K, Das G P and Ayyub P 1997 (to be published)Google Scholar
  28. Schneer C J 1955Acta Cryst. 8 279CrossRefGoogle Scholar
  29. Schönberger U, Andersen O K and Methfessel M 1992Acta Metall. Mater. 40 S1Google Scholar
  30. Sharma A Ket al 1993Mater. Lett. 17 42CrossRefGoogle Scholar
  31. Sharma A K, Salunke H G, Das G P, Ayyub P and Multani M S 1996J. Phys.: Condens. Matter 8 5801CrossRefGoogle Scholar
  32. Skriver H L 1985Phys. Rev. B31 1909Google Scholar
  33. Spear K E, Phelps A W and White W B 1990J. Mater. Res. 5 2277CrossRefGoogle Scholar
  34. Smith J R and Srolovitz D J 1992Modelling Simul. Mater. Sci. Engg. 1 101CrossRefGoogle Scholar
  35. Trampert A, Ernst F, Flynn C P, Fischmeister H F and Rühle M 1992Acta Metall. Mater. 40 S227Google Scholar
  36. Verma A R and Krishna P 1966Polymorphism and polytypism in crystals (New York: John Wiley); (see the derivation given in pp 273–276)Google Scholar
  37. Vitek V and Srolovitz D J (eds) 1989Atomistic simulation of materials (New York: Plenum)Google Scholar

Copyright information

© the Indian Academy of Sciences 1997

Authors and Affiliations

  • G P Das
    • 1
  1. 1.Solid State Physics DivisionBhabha Atomic Research CentreMumbaiIndia

Personalised recommendations