Advertisement

Sadhana

, Volume 23, Issue 5–6, pp 653–684 | Cite as

Cyclone track prediction

  • T N Krishnamurti
  • Bhaskar Jha
Surveys in Fluid Mechanics-IV
  • 68 Downloads

Abstract

This is a review paper based on tropical cyclone research that was mostly carried out at the Florida State University. In this review we address a number of modelling issues such as: Explicit specification of the constant flux layer, cloud-radiative interaction and low cloud, cumulus parameterization, physical initialization, the ensemble of hurricane track forecasts and cloud forecasts. Among these the areas that have demonstrated the most sensitivity on tropical cyclone tracks, landfall and intensity are: resolution, cumulus convection, sea surface temperatures, soil moisture and orography around the ocean basin.

Keywords

Tropical cyclones cumulus convection sea surface temperature soil moisture ocean basin orography 

List of acronyms and symbols

EOF

empirical orthogonal function

FSU

Florida State University

OLR

outgoing longwave radiation

Q2

vertically integrated apparent moisture flux

SSM/I

special sensor microwave instrument

T213

triangular truncation at wave number 213

θe

equivalent potential temperature

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Businger J A, Wyngard J C, Izumi Y, Bradley E F 1971 Flux profile relationship in the atmospheric surface layer.J. Atmos. Sci. 28: 181–189CrossRefGoogle Scholar
  2. Dastoor A, Krishnamurti T N 1991 The landfall and structure of tropical cyclone: The sensitivity of model predictions to soil moisture parameterization.Boundary-Layer Meteorol. 55: 345–380CrossRefGoogle Scholar
  3. Harshvardan, Corsetti T G 1984 Longwave parameterization for the UCLA/GLAS GCM. NASA Tech. Memo 86072, Goddard Space Flight Center, Greenbelt, MDGoogle Scholar
  4. Kanamitsu M 1975 On numerical weather prediction over a tropical belt. Report No. 75-1, Dept. of Meteorology, Florida State University, Tallahassee, FL 32306, pp 1–282Google Scholar
  5. Katayama A 1967 On radiation budget of the troposphere over the northern hemisphere (II).J. Meteor. Soc. Jpn. 45: 1–25Google Scholar
  6. Kitade T 1983 Nonlinear normal mode initialization with physics.Mon. Weather Rev. 111: 2194–2213CrossRefGoogle Scholar
  7. Krishnamurti T N, Bedi H S 1988 Cumulus parameterization and rainfall rates: Part III.Mon. Weather Rev. 116: 583–589CrossRefGoogle Scholar
  8. Krishnamurti T N, Low-Nam S, Pasch R 1983 Cumulus parameterization and rainfall rates, part II.Mon. Weather Rev. 111: 815–828CrossRefGoogle Scholar
  9. Krishnamurti T N, Oosterhof D, Dignon N 1989 Hurricane prediction with a high resolution global model.Mon. Weather Rev. 117: 631–669CrossRefGoogle Scholar
  10. Krishnamurti T N, Xue J, Bedi H S, Ingles K, Oosterhof D 1991a Physical initialization for numerical weather prediction over the tropics.Tellus AB43: 53–81Google Scholar
  11. Krishnamurti T N, Yap K S, Oosterhof D K 1991b Sensitivity of tropical storm forecast to radiative destabilization.Mon. Weather Rev. 119: 2176–2205CrossRefGoogle Scholar
  12. Krishnamurti T N, Bedi H S, Yap K S, Oosterhof D, Rohaly G 1992 Recurvature dynamics of a typhoon.J. Meteor. Atmos. Phys. 50: 105–126CrossRefGoogle Scholar
  13. Krishnamurti T N, Oosterhof D, Sukawat D 1994a Numerical prediction of a Bangladesh Tropical Cyclone.Terres. Atmos. Ocean. Sci. 5: 245–275Google Scholar
  14. Krishnamurti T N, Rohaly G D, Bedi H S 1994b On the improvement of precipitation forecast skill from physical initialization.Tellus A46: 598–614Google Scholar
  15. Krishnamurti T N, Han W, Jha B, Bedi H S 1998 Numerical prediction of Hurricane Opal.Mon. Weather Rev. 126: 1347–1363CrossRefGoogle Scholar
  16. Kuo H L 1974 Further studies of the parameterization of the influence of cumulus convection on large scale flow.J. Atmos. Sci. 31: 1232–1240CrossRefGoogle Scholar
  17. Lacis A A, Hansen J E 1974 A parameterization of the absorption of solar radiation in the earth’s atmosphere.J. Atmos. Sci. 31: 118–133CrossRefGoogle Scholar
  18. Louis J F 1979 A parametric model of vertical eddy fluxes in the atmosphere.Boundary-Layer Meteorol. 17: 187–202CrossRefGoogle Scholar
  19. Powell M D 1988Boundary layer structure and dynamics in outer hurricane rainbands. PhD dissertation, Dept. of Meteorology, The Florida State University, Tallahassee, FLGoogle Scholar
  20. Tiedke M 1984 The sensitivity of the time-mean large-scale flow to cumulus convection in the ECMWF model.Workshop on convection in large-scale numerical models (ECMWF) 28, pp 297–316Google Scholar
  21. Wallace J M, Tibaldi S, Simmons A J 1983 Reduction of systematic forecast errors in the ECMWF model through the introduction of envelope orography.Q. J. R. Met. Soc. 109: 683–718CrossRefGoogle Scholar
  22. Yanai M, Esbensen S, Chu J H 1973 Determination of bulk properties of tropical cloud clusters from large scale heat and moisture budget.J. Atmos. Sci. 30: 611–627CrossRefGoogle Scholar
  23. Zhang Z, Krishnamurti T N 1998 On ensemble forecasting of hurricane tracks.Bull. Am. Meteor. Soc. 78: 2785–2795CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 1998

Authors and Affiliations

  • T N Krishnamurti
    • 1
  • Bhaskar Jha
    • 1
  1. 1.Department of MeteorologyFlorida State UniversityTallahasseeUSA

Personalised recommendations