Advertisement

Bulletin of Materials Science

, Volume 11, Issue 2–3, pp 167–190 | Cite as

Pulsed laser reactive quenching at liquid-solid interface

  • S M Kanetkar
  • S B Ogale
Proceedings Of The Winter School On Laser Material Processing

Abstract

Recent results on high-power pulsed-laser-induced transformations at liquid-solid interface are described in the context of synthesis of new metastable phases of materials. Specifically two types of problems are reported: (i) laser-induced synthesis of compound film at liquid solid interface, this process being termed “reactive quenching”, and (ii) laser-induced alloying of layered structure under liquid medium wherein the reactive aspect plays the minimal role. So far the reactive quenching process has been studied for different metals, compounds and thin film sandwiches in various liquid ambients such as H2O, liquid ammonia (NH3), liquid N2 and benzene (C6H6). The identification of the metastable phases and the microstructural transformations therein subsequent to laser processing and thermal annealing have been brought out by employing a range of techniques such as conversion electron Mössbauer spectroscopy (CEMS), X-ray diffraction (XRD), Rutherford backscattering spectrometry (RBS), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), etc. Laser-induced alloying of layered structure in liquid ambient has been investigated in case of Fe/Al and Fe/B systems. The possible mechanism which could be responsible for the observed effects is discussed on the basis of time-resolved reflectivity measurements.

Keywords

Pulsed laser reactive quenching liquid-solid interface laser-induced synthesis laser-induced alloying 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bauerle D 1984Laser processing and diagnostics (Berlin: Springer-Verlag)Google Scholar
  2. Chan S W, Dijkkamp D, Wu X D, Venkatesan T and Chang C C 1987 inBeam-solid interactions and transient processes (Mater. Res. Soc. Proc. 74) (eds) S T Picraux, M O Thompson and J S Williams (New York: North-Holland) p. 297Google Scholar
  3. Cheung N W, Seefeld H Von, Nicolet M A, Ho F and Iles P 1981J. Appl. Phys. 52 4297CrossRefGoogle Scholar
  4. Dijkkamp D, Wu X D, Chan S W and Venkatesan T 1987J. Appl. Phys. 62 293CrossRefGoogle Scholar
  5. Elias D J and Linett J W 1969Trans. Faraday Soc. 65 2673CrossRefGoogle Scholar
  6. Fogarassy E, Stuck R, Grob J J and Siffert P 1981J. Appl. Phys. 52 1076CrossRefGoogle Scholar
  7. Ghaisas Smita S, Chaudhari S M, Kanetkar S M and Ghaisas S V 1988J. Appl. Phys. (in press)Google Scholar
  8. Ghaisas S V, Malshe A P, Patil P P, Kanetkar S M, Ogale S B and Bhide V G 1987J. Appl. Phys. 62 2799CrossRefGoogle Scholar
  9. Greenwood N N and Gibb T C 1971Mössbauer spectroscopy (London: Chapman and Hall) p. 248Google Scholar
  10. Houle F A 1984Laser assisted deposition, etching and doping, Proc. SPIE (Int. Soc. Opt. Eng.) (ed.) Susan D Allen459 110Google Scholar
  11. Houle F A, Jones C R, Baum T, Pico C and Kovac C A 1985Appl. Phys. Lett. 40 204CrossRefGoogle Scholar
  12. Jackson R B, Foord J S, Adams A E and Lloyd M L 1986J. Appl. Phys. 59 6CrossRefGoogle Scholar
  13. Jain A K, Kulkarni V N and Sood D K 1981Appl. Phys. 25 127CrossRefGoogle Scholar
  14. Joshi Sushama, Phase D M, Kanetkar S M, Ghaisas S V and Ogale S B 1988aHyperfine Interact. 41 689CrossRefGoogle Scholar
  15. Joshi Sushama, Phase D M, Kanetkar S M and Ogale S B 1988bJ. Appl. Phys. 63 3792CrossRefGoogle Scholar
  16. Kanetkar S M, Patil P P, Ghaisas S V and Ogale S B 1988Hyperfine Interact. 41 587CrossRefGoogle Scholar
  17. Kulkarni V N, Kanetkar S M and Ogale S B (unpublished)Google Scholar
  18. Mayer W and Lau S S 1981 inSurface modifications and alloying by laser, ion and electron beams (eds) J M Poate, G Foti and D C Jacobson (New York: Plenum) 252Google Scholar
  19. Mayo M 1986Solid State Technol. 29 141CrossRefGoogle Scholar
  20. Moncoffre N, Hollinger G, Jaffrezic H, Marest G and Tousset J 1985Nucl. Instrum. Methods B7/8 177Google Scholar
  21. Morita N, Ishida S, Fujimovi Y and Ishikawa K 1988Appl. Phys. Lett. 52 1965CrossRefGoogle Scholar
  22. Ogale S B, Phase D M, Chaudhari S M, Ghaisas S V, Kanetkar S M, Patil P P, Bhide V G and Date S K 1987aPhys. Rev. B35 1593Google Scholar
  23. Ogale S B, Polman A, Quentin F O P, Roorda S and Saris F W 1987bAppl. Phys. Lett. 50 138CrossRefGoogle Scholar
  24. Ogale S B, Patil P P, Phase D M, Bhandarkar Y V, Kulkarni S K, Kulkarni Smita, Ghaisas S V, Kanetkar S M, Bhide V G and Guha S 1987cPhys. Rev. B36 8237Google Scholar
  25. Ogale S B, Patil P P, Roorda S and Saris F W 1988Appl. Phys. Lett. 50 1802CrossRefGoogle Scholar
  26. Patil P P, Phase D M, Kulkarni S A, Ghaisas S V, Kulkarni S K, Kanetkar S M, Ogale S B and Bhide V G 1987Phys. Rev. Lett. 58 238CrossRefGoogle Scholar
  27. Poate J M and Mayer J W 1982Laser annealing of semiconductors (New York: Academic Press)Google Scholar
  28. Polman A, Roorda S, Ogale S B and Saris F W 1987 inMater. Res. Soc. Symp. Proc. (eds) S T Picraux, M O Thompson and J S Williams (Pittsburg: Materials Research Society) p. 74Google Scholar
  29. Polman A, Sinke W, Saris F W, Uttormark M J and Thompson M O 1988Appl. Phys. Lett. (in Press)Google Scholar
  30. Rossnagel S M and Sites J R 1984J. Vac. Sci. Technol. 2 376Google Scholar
  31. White C W, Pronko P P, Wilson S R, Applecton B R, Narayan J and Young R T 1979J. Appl. Phys. 50 3261CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 1988

Authors and Affiliations

  • S M Kanetkar
    • 1
  • S B Ogale
    • 1
  1. 1.Department of PhysicsUniversity of PoonaPuneIndia

Personalised recommendations