Advertisement

Bulletin of Materials Science

, Volume 11, Issue 2–3, pp 109–127 | Cite as

Modelling of laser-induced effects in materials

  • Animesh K Jain
Proceedings Of The Winter School On Laser Material Processing
  • 38 Downloads

Abstract

Progress made in modelling laser-induced effects in materials is reviewed. Calculation of the thermal history of a material treated with a high power laser pulse is described in detail. Variation of thermophysical properties with temperature, and phase changes such as melting, vaporization and resolidification are incorporated into the calculations. Typical results for laser treatment of iron are presented. The melt parameters obtained from the heating calculations are used to predict the solute depth profiles in surface alloys produced by pulsed laser treatment. Non-equilibrium segregation effects, arising from extremely high resolidification velocities of several metres per second, are discussed and incorporated into calculations of the solute depth profiles. Departures from expected profiles due to convection in the melt are briefly discussed.

Keywords

Laser processing heat conduction diffusion metastable alloys 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arden B W and Astill K N 1970Numerical algorithms: origins and applications (London: Addison-Wesley) p. 280Google Scholar
  2. Auston D H, Surko C M, Venkatesan T N C, Slusher R E and Golovchenko J A 1978Appl. Phys. Lett. 33 437CrossRefGoogle Scholar
  3. Aziz Michael J, Rehn Lynn E and Stritzker Bernd 1988Fundamentals of beam-solid interactions and transient thermal processing (New York: North-Holland)Google Scholar
  4. Baeri P, Campisano S U, Foti G and Rimini E 1979J. Appl. Phys. 50 788CrossRefGoogle Scholar
  5. Baeri P, Foti G, Poate J M, Campisano S U and Cullis A G 1981Appl. Phys. Lett. 38 800CrossRefGoogle Scholar
  6. Bell R O, Toulemonde M and Siffert P 1979Appl. Phys. 19 313CrossRefGoogle Scholar
  7. Biegelsen D K, Rozgonyi G A and Shank C V 1985Energy beam-solid interactions and transient thermal processing (New York: North-Holland)Google Scholar
  8. Brown W L 1984 inEnergy beam-solid interactions and transient thermal processing (eds) John C C Fan and Noble M Johnson (New York: North Holland) p. 9Google Scholar
  9. Burton J A, Prim R C and Slichter W P 1953J. Chem. Phys. 21 1987CrossRefGoogle Scholar
  10. Carslaw H S and Jaeger J C 1959Conduction of heat in solids (London: Oxford University Press) 2nd edition p. 92Google Scholar
  11. Chan C, Mazumder J and Chen M M 1984Metall. Trans. A15 2175Google Scholar
  12. Compaan A, Lo H W, Aydinli A and Lee M C 1983 inLaser-solid interactions and transient thermal processing of materials (eds) J Narayan, W L Brown and R A Lemons (New York: North-Holland) p. 23Google Scholar
  13. Donà Dalle Rose L F and Miotello A 1980Radiat. Eff. 53 7CrossRefGoogle Scholar
  14. Fan J C C and Johnson N M 1984Energy beam-solid interactions and transient thermal processing (New York: North-Holland)Google Scholar
  15. Ferris S D, Leamy H J and Poate J M (eds) 1979Laser-solid interactions and laser processing (New York: American Institute of Physics)Google Scholar
  16. Gibbons J F, Hess L D and Sigmon T W 1981Laser and electron-beam interactions and materials processing (New York: North-Holland)Google Scholar
  17. Gray D E (co-ordinating ed.) 1972American Institute of Physics handbook (New York: McGraw-Hill) 3rd edition chapter 4Google Scholar
  18. Hermes P, Danielzik B, Fabricius N and von der Linde D 1986Appl. Phys. A39 9Google Scholar
  19. Jackson K A, Gilmer G H and Leamy H J 1980 inLaser and electron-beam processing of materials (eds) C W White and P S Peercy (New York: Academic Press) p. 104Google Scholar
  20. Jackson K F 1975 inTreatise on solid state chemistry (ed.) N B Hannay (New York: Plenum Press) vol. 5, chapter 5Google Scholar
  21. Jain Animesh K and Sood D K 1981 inPreparation and characterization of materials (eds) J M Honig and C N R Rao (New York: Academic Press) p. 47Google Scholar
  22. Jain Animesh K, Kulkarni V N and Sood D K 1981aAppl. Phys. 25 127CrossRefGoogle Scholar
  23. Jain Animesh K, Kulkarni V N and Sood D K 1981bNucl. Instrum. Meth. 191 151CrossRefGoogle Scholar
  24. Jellison G E, Lowndes D H and Wood R F 1983 inLaser-solid interactions and transient thermal processing of materials (eds) J Narayan, W L Brown and R A Lemons (New York: North-Holland) p. 35Google Scholar
  25. Kurz H, Olson G L and Poate J M 1986Beam-solid interactions and phase transformations (New York: North-Holland)Google Scholar
  26. Larson B C, White C W, Noggle T S and Mills D M 1982Phys. Rev. Lett. 48 337CrossRefGoogle Scholar
  27. Larson B C, White C W, Noggle T S, Barhorst J F and Mills D M 1983Appl. Phys. Lett. 42 282CrossRefGoogle Scholar
  28. Lo H W and Compaan A 1980Phys. Rev. Lett. 44 1604CrossRefGoogle Scholar
  29. Lompre L A, Liu J M, Kurz H and Bloembergen N 1983Appl. Phys. Lett. 43 168CrossRefGoogle Scholar
  30. Lompre L A, Liu J M, Kurz H and Bloembergen N 1984Appl. Phys. Lett. 44 3CrossRefGoogle Scholar
  31. Miotello A and Donà Dalle Rose L F 1981Radiat. Eff. 55 235CrossRefGoogle Scholar
  32. Narayan J, Brown W L and Lemons R A 1983Laser-solid interactions and transient thermal processing of materials (New York: North-Holland)Google Scholar
  33. Picraux S T, Thompson M O and Williams J S 1987Beam-solid interactions and transient processes (New York: North-Holland)Google Scholar
  34. Richtmeyer R D and Morton K W 1967Difference methods for initial value problems (New York: Interscience) 2nd editionGoogle Scholar
  35. Rosenberger F 1979Fundamentals of crystal growth I (New York: Springer-Verlag) p. 419Google Scholar
  36. Rothman S J 1984 inDiffusion in crystalline solids (eds) G E Murch and A S Nowick (New York: Academic Press) p. 1Google Scholar
  37. Shank C V, Yen R and Hirlimann C 1983Phys. Rev. Lett. 50 454;Phys. Rev. Lett. 51 900CrossRefGoogle Scholar
  38. Smith V G, Tiller V A and Rutter J W 1955Can. J. Phys. 33 723Google Scholar
  39. Smithells C J 1976Metals reference book (London: Butterworths) 5th edition pp. 940–950Google Scholar
  40. Sood D K 1982Radiat. Eff. 63 141CrossRefGoogle Scholar
  41. Stritzker B, Pospieszczyk P and Tagle J A 1981Phys. Rev. Lett. 47 356CrossRefGoogle Scholar
  42. Stuck R, Fogarassy E, Grob J J and Siffert P 1980Appl. Phys. 23 15CrossRefGoogle Scholar
  43. Thompson M O, Galvin G J, Mayer J W, Peercy P S and Hammond R B 1983aAppl. Phys. Lett. 42 445CrossRefGoogle Scholar
  44. Thompson M O, Mayer J W, Cullis A G, Webber H C, Chew N G, Poate J M and Jacobson D C 1983bPhys. Rev. Lett. 50 896CrossRefGoogle Scholar
  45. Touloukian Y S, Powell R W, Ho C Y and Nicolaou M C (eds) 1973Thermophysical properties of matter: thermal diffusivity (New York: Plenum Press) vol. 10, p. 82Google Scholar
  46. Tsao J Y, Picraux S T, Peercy P S and Thompson M O 1986Appl. Phys. Lett. 48 279CrossRefGoogle Scholar
  47. Turner W D, Elrod D C and Siman-Tov I I 1977HEATING5—an IBM360 heat conduction program Report No. ORNL/CSD/TM-15, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USAGoogle Scholar
  48. White C W and Peercy P S 1980Laser and electron-beam processing of materials (New York: Academic Press)Google Scholar
  49. White C W, Narayan J, Appleton B R and Wilson S R 1979aJ. Appl. Phys. 50 2967CrossRefGoogle Scholar
  50. White C W, Narayan J and Young R T 1979bScience 204 461CrossRefGoogle Scholar
  51. White C W, Wilson S R, Appleton B R and Narayan J 1980a inLaser and electron-beam processing of materials (eds) C W White and P S Peercy (New York: Academic Press) p. 214Google Scholar
  52. White C W, Wilson S R, Appleton B R and Young F W Jr 1980bJ. Appl. Phys. 51 738CrossRefGoogle Scholar
  53. Wilson S R, White C W, Young F W, Appleton B R and Narayan J 1980J. Phys. Colloq. (Paris) C4 C4-C91Google Scholar
  54. Wood R F and Giles G E 1981Phys. Rev. B23 2923Google Scholar
  55. Young R T, Narayan J and Wood R F 1979Appl. Phys. Lett. 35 447CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 1988

Authors and Affiliations

  • Animesh K Jain
    • 1
  1. 1.Nuclear Physics DivisionBhabha Atomic Research CentreBombayIndia

Personalised recommendations