Advertisement

Il Nuovo Cimento (1955-1965)

, Volume 5, Supplement 1, pp 182–221 | Cite as

Directional correlations of ß-rays

  • I. Hauser
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    For a simple derivation see for instanceBeta- and Gamma-Ray Spectroscopy (edited byK. Siegbahn, New York, 1955), Chapter XIX (I) byH. Frauenfelder, § 3.Google Scholar
  2. (2).
    L. C. Biedenharn andM. E. Rose:Rev. Mod. Phys.,25, 729 (1953). These tables are reproduced in ref. (1), Appendix V.ADSCrossRefGoogle Scholar
  3. (3).
    M. Ferentz andN. Rosenzweig:Argonne National Laboratory Report 5324 (1954).Google Scholar
  4. (4).
    For a survey of this subject and further references seeH. Frauenfelder. ref. (1), § 9.Google Scholar
  5. (8).
    G. Racah:Phys. Rev.,62, 938 (1942).ADSGoogle Scholar
  6. (9).
    G. Racah:Phys. Rev.,84, 910 (1951).ADSCrossRefGoogle Scholar
  7. (10).
    M. E. Rose andD. K. Holmes:Phys. Rev.,83, 190 (1951) andOak Ridge National Laboratory Report 1022. However these are insufficient for directional correlations.ADSCrossRefGoogle Scholar
  8. (11).
    Fhe function (1+γ0)(PF0/2E) where 184-01 and α is the fine structure constant is tabulated byN. Dismuke, M. E. Rose, C. L. Perry andP. R. Bell:Oak Ridge National Laboratory Report 1222. These tables are reproduced in ref. (1), Appendix II.Google Scholar
  9. (12).
    L. C. Biedenharn:Oak Ridge National Laboratory Report 1098;A. Simon, J. H. Van der Sluis andL. C. Biedenharn:Oak Ridge National Laboratory Report 1679.Google Scholar
  10. (13).
    M. E. Rose, C. L. Perry andN. M. Dismuke:Oak Ridge National Laboratory Report 1459. These tables are reproduced in ref. (1), Appendix III.Google Scholar
  11. (14).
    C. Flügge andS. Flügge:Zeits. f. Naturf.,2a, 6 (1947);J. R. Reitz:Phys. Rev.,77, 10 (1950).ADSGoogle Scholar
  12. (15).
    H. Frauenfelder:Ann. Rev. Nucl. Science,2, 129 (1953); also, ref. (1). An additional ß-υ correlation has been measured and analyzed in considerable detail byT. B. Novey, M. S. Freedman, F. T. Porter andF. Wagner Jr. :Argonne National Laboratory Report 5523 (1956). An anisotropic ß-υ correlation is reported for38C1 byP. Macq:Bull. Acad. Roy. Belgique Cl. Sci.,40, 802 (1954). An anisotropic ß-α correlation in the8Li decay is found by C.M. Class andS. S. Hanna:Phys. Rev.,89, 877 (1953);D. St. P. Bunbury:Phys. Rev.,90, 1121 (1953); however an isotropic ß-α correlation for the same decay is found by S.S. Hanna, E. C. La Vier andC. M. Class:Phys. Rev.,95, 110 (1954).ADSCrossRefGoogle Scholar
  13. (16).
    M. Fuchs:Ph.D. Dissertation (University of Michigan, 1951) Unpublished.Google Scholar
  14. (17).
    H. M. Mahmoud andE. J. Konopinski:Phys. Rev.,88, 1266 (1952).ADSCrossRefGoogle Scholar
  15. (18).
    B. M. Rustad andS. L. Ruby:Phys. Rev.,89, 880 (1953).ADSCrossRefGoogle Scholar
  16. (19).
    M. E. Rose andR. K. Osborn:Phys. Rev.,93, 1315 (1954).ADSCrossRefGoogle Scholar
  17. (20).
    D. L. Falkoff andG. E. Uhlenbeck:Phys. Rev.,79, 334 (1950).ADSMathSciNetCrossRefGoogle Scholar
  18. (21).
    J. A. Spiers andE. J. Blin-Stoyle:Proc. Phys. Soc. (London),65, 809 (1952).ADSCrossRefGoogle Scholar
  19. (22).
    M. Fuchs andE. S. Lennox:Phys. Rev.,79, 221 (1950) (A).Google Scholar
  20. (23).
    E. J. Konopinski andL. M. Langer:Ann. Rev. Nucl. Science,2, 261 (1953).ADSCrossRefGoogle Scholar
  21. (24).
    M. Yamada andM. Morita:Prog. Theor. Phys.,8, 431 (1952);10, 641 (1953).ADSCrossRefGoogle Scholar
  22. (25).
    M. Morita:Prog. Theor. Phys.,10, 363 (1953).ADSCrossRefGoogle Scholar
  23. (26).
    Y. Kato andM. Morita:Prog. Theor. Phys.,13, 276 (1955).ADSCrossRefGoogle Scholar
  24. (27).
    M. Morita:Prog. Theor. Phys.,14, 27 (1955). I am indebted to Dr.H. Frauenfelder for sending a manuscript of this paper to me before its publication.ADSCrossRefGoogle Scholar
  25. (29).
    E. J. Konopinski andL. M. Langer:Ann. Rev. Nucl. Science,2, 261 (1953). As explained in Sect.1, we omitA andV terms.ADSCrossRefGoogle Scholar
  26. (30).
    H. A. Tolhoek andS. R. De Groot:Physica,16, 456 (1953). TheirC = iβα2 in our representation.Google Scholar
  27. (31).
    M. E. Rose andR. K. Osborn:Phys. Rev.,93, 1315 (1954). Their derivation differs from ours; but results are the same.ADSCrossRefGoogle Scholar
  28. (32).
    M. E. Rose andR. K. Osborn:Phys. Rev.,93, 1326 (1954).ADSCrossRefGoogle Scholar
  29. (35).
    J. B. Gerhart;Phys. Rev.,95, 288 (1954) from the β spectrum and half life of14O and theft value of neutron decay A full discussion of measurements of GT/GS is to be found in ref. (1), Chapter XI byC. S. Wu, § 4.ADSCrossRefGoogle Scholar
  30. (36).
    This agrees withM. E. Rose andR. K. Osborn, ref. (31), who consider specific matrix elements deriving from this term.Google Scholar
  31. (37).
    (jj0mm0\vbJM) is the Clebsch-Gordan coefficient (jj0mm0\vbjj0JM). SeeE. U. Condon andG. H. Shortley:The Theory of Atomic Spectra (Cambridge, 1951) for a definition. Also we use their definition of the spherical harmonics Ymj(Ω).Google Scholar
  32. (38).
    C. L. Longmire andA. M. L. Messiah:Phys. Rev.,83, 464 (L) (1951).ADSCrossRefGoogle Scholar
  33. (39).
    F. Coester:Phys. Rev.,89, 619 (1953), in particular, eqs. (6) and (12).ADSMathSciNetCrossRefGoogle Scholar
  34. (40).
    E. P. Wigneb:Gött. Nachr.,31, 546 (1932).Google Scholar
  35. (40).
    See ref. (37), eq. (3).Google Scholar
  36. (42).
    M. E. Rose:Phys. Rev.,51, 484 (1937).ADSCrossRefGoogle Scholar
  37. (44).
    J. A. Spiers andR. J. Blin-Stoyle:Proc. Phys. Soc, A65, 801 (1952). TheirB llojjo(ILS) is our λ coefficient.ADSCrossRefGoogle Scholar
  38. (45).
    F. Coester andJ. M. Jauch:Helv. Phys. Acta,26, 3 (1952). A review of several different definitions is given by H.A. Jahn andJ. Hope:Phys. Rev.,93, 318 (1954).MathSciNetGoogle Scholar
  39. (47).
    M. E. Rose:Phys. Rev.,82, 389 (1951).ADSCrossRefGoogle Scholar
  40. (49).
    M. K. Banerjee andA. K. Saha:Proc. Roy. Soc. London,224, 472 (1952).ADSCrossRefGoogle Scholar
  41. (50).
    For the rule regarding the change in sign ofGT, see ref. (30).Google Scholar
  42. (51).
    E. J. Konopinski andG. E. Uhlenbeck:Phys. Rev.,60, 308 (1941).ADSCrossRefGoogle Scholar
  43. (52).
    T. Ahrens, E. Feenberg andH. Pimakoff:Phys. Rev.,87, 663 (1952).ADSCrossRefGoogle Scholar
  44. (52a).
    M. E. Rose, L. C. Biedenharn andG. B. Arfken:Phys. Rev.,85, 5 (1952). The only effect of using ah outgoing wave instead is to change the sign of the phase in eqs. (65) and (66). However only the real part of (66) enters into the directional correlation. Therefore, the directional correlation is the same whether an ingoing or an outgoing wave is used.ADSCrossRefGoogle Scholar
  45. (53).
    L. C. Biedenharn andM. E. Rose:Phys. Rev.,83, 459 (1951).ADSCrossRefGoogle Scholar
  46. (55).
    E. Greuling:Phys. Rev.,61, 568 (1942).ADSCrossRefGoogle Scholar
  47. (56).
    D. L. Pursey:Phil. Mag., Ser. 7,42, 1193 (1951).CrossRefGoogle Scholar
  48. (58).
    M. Yamada:Prog. Theor. Phys.,10, 252 (1953) andG. E. Lee-Whiting:Phys. Rev.,97, 463 (1954).ADSCrossRefGoogle Scholar
  49. (59).
    E. J. Whittaker andG. E. Robinson:The Calculus of Observations (London, 1929), Chapter VII, Sect. 67, expecially eq. (5).Google Scholar
  50. (62).
    F. T. Porter, M. S. Freedman, T. B. Novey andF. Wagner, Jr.:Argonne National Laboratory Report 5525 (1956).Google Scholar
  51. (63).
    M. Yamada andM. Morita: ref. (24) (1953).Google Scholar
  52. (64).
    G. Alaga, O. Kofoed-Hansen andA. Winter:Dan. Mat. Phys. Medd.,28, No. 3 (1953).Google Scholar
  53. (65).
    J. Fujita andM. Yamada:Prog. Theor. Phys.,10, 518 (1953). This paper notes that the derivative terms (D’(1) terms) are small whenZα « 1.ADSCrossRefGoogle Scholar
  54. (66).
    D. T. Stevenson andM. Deutsch:Phys. Rev.,83, 1202 (1951). Other references on24Na are given byH. Frauenfelder, ref. (15).ADSCrossRefGoogle Scholar
  55. (67).
    M. Morita andM. Yamada:Prog. Theor. Phys.,13, 114 (1955).ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica 1957

Authors and Affiliations

  • I. Hauser
    • 1
    • 2
  1. 1.Department of PhysicsState University of IowaIowa City
  2. 2.Northern Illinois State CollegeDe Kalb

Personalised recommendations