Bulletin of Materials Science

, Volume 10, Issue 4, pp 313–322 | Cite as

Photoelectrochemical properties of metal-cluster oxide compounds, A2Mo3O8 and (LiY)Mo3O8

  • M Paranthaman
  • G Aravamudan
  • G V Subba Rao
Special Issue On Energy Resources Through Photoelectrochemical Routes


PEC studies on the single crystals of the metal-cluster oxide compounds. A2Mo3O8 (A = Zn, Mg, Fe), and polycrystalline LiYMo3O8 are reported. The photoresponse behaviour is attributed to the Mod-d transition. The photopotential, the photocurrent vs applied voltage and the wavelength data indicate thatn-Zn2Mo3O8 is stable and possesses a small and indirect band gap of 1·55 eV and a direct band gap of 1·9 eV. With change in A ions in A2Mo3O8, there is no significant change in the PEC properties. LiYMo3O8 is found to be ofp-type. PEC studies show that excepting for poor electronic conductivity, A2Mo3O8 possesses all the requisitie characteristics of an ideal photoanode for PAE of water for trapping solar energy.


Metal-cluster oxides d-d transition single crystals photoresponsive semi-conductors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alonso Vante N and Tributsch H 1986Proc. Sixth Int. Conf. on Photochemical Conversion and Storage of Solar Energy, Paris, Paper C-79 Google Scholar
  2. Ansell G B and Katz L 1966Acta Crystallogr. 21 482CrossRefGoogle Scholar
  3. Benko F A and Koffyberg F P 1986Solid State Commun. 57 901CrossRefGoogle Scholar
  4. Butler M A, Abramovich M, Decker F and Juliao J F 1981J. Electrochem. Soc. 128 200CrossRefGoogle Scholar
  5. Butler M A and Ginley D S 1980J. Mater. Sci. 15 1CrossRefGoogle Scholar
  6. DeBenedittis J and Katz L 1965Inorg. Chem. 4 1836CrossRefGoogle Scholar
  7. Goodenough J B 1982Proc. Climax Fourth Int. Conf. on Chem. and uses of Mo (eds) H F Barry and P C M Mitchell (Ann. Arbor, Michigan: Climax Molybdenum Co.)Google Scholar
  8. Hormadaly J, Subbarao S N, Kershaw R, Dwight K and Wold A 1980J. Solid State Chem. 33 27CrossRefGoogle Scholar
  9. Jarrett H S, Sleight A W, Kung H H and Gillson J L 1980J. Appl. Phys. 51 3916CrossRefGoogle Scholar
  10. McCarroll W H 1977Inorg. Chem. 16 3353CrossRefGoogle Scholar
  11. McCarroll W H, Darling C and Jakubicki G 1983J. Solid State Chem. 48 189 and references thereinCrossRefGoogle Scholar
  12. Paranthaman M, Aravamudan G and Subba Rao G V 1986aIndian J. Technol. 24 399Google Scholar
  13. Paranthaman M, Aruchamy A, Aravamudan G and Subba Rao G V 1986bMater. Chem. Phys. 14 349CrossRefGoogle Scholar
  14. Salvador P, Gutierrez C, Campet G and Hagenmuller P 1984J. Electrochem. Soc. 131 550CrossRefGoogle Scholar
  15. Strobel P, Le Page Y and McAlister S P 1982J. Solid State Chem. 42 242CrossRefGoogle Scholar
  16. Subba Rao G V, Aruchamy A, Aravamudan G and Paranthaman M 1984Advances in hydrogen energy 4. Hydrogen energy progress (New York: Pergamon Press) vol. 3, p. 1075Google Scholar
  17. Subba Rao G V and Geetha Balakrishnan 1984Bull. Mater. Sci. 6 283CrossRefGoogle Scholar
  18. Subba Rao G V, Paranthaman M and Aravamudan G 1986Proc. Sixth Int. Conf. on Photochemical Conversion and Storage of Solar Energy, Paris, Paper D-103Google Scholar
  19. Subba Rao G V and Shafer M W 1979 inPhysics and chemistry of materials with layered structures (ed.) F Levy (Dordrecht: D. Reidel) vol. 6Google Scholar
  20. Tributsch H 1986 inModern aspects of electrochemistry No. 17 (eds) J O’M Bockris, B E Conway and R E White (New York: Plenum) p. 303Google Scholar

Copyright information

© the Indian Academy of Sciences 1988

Authors and Affiliations

  • M Paranthaman
    • 1
  • G Aravamudan
    • 1
  • G V Subba Rao
    • 1
  1. 1.Materials Science Research CentreIndian Institute of TechnologyMadrasIndia

Personalised recommendations