Advertisement

Bulletin of Materials Science

, Volume 6, Issue 6, pp 979–989 | Cite as

Preparation and characterisation ofβ″-Al2O3

  • H S Kalsi
  • R P Tandon
  • Balbir Singh
  • R C Goel
  • B K Das
Article

Abstract

Beta alumina solid electrolyte is a potential candidate in the fabrication of Na-S batteries. In the present study, it has been prepared in the form of discs by uniaxially as well as isostatically pressing and sintering in the temperature range 1585–1630°C, the highest sintered density of 3·25 g/cm3 has been achieved in the samples isostatically pressed and sintered at 1630°C. X-ray analysis of the samples shows formation ofβ″-phase. Microstructure of the sintered samples reveals some darker regions which are attributed to low soda content. Resistivity at 300°C measured by the two-probe method at a frequency of 1 MHz on samples having vacuum-deposited silver electrodes is 15 ohm-cm, which is slightly higher than the value of 5–13 ohm-cm reported in literature using molten sodium electrodes. The activation energy of conductivity is 0·24 eV which is comparable to the literature value of 0·24–0·35 eV.

Keywords

Conducting ceramic ionic conductor sodium beta alumina solid electrolyte 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ASTM 1967 19-1173Google Scholar
  2. Das B K, Kalsi H S, Khullar S M, Kumar Rahul, Goel R C and Misra S C KInt. Symp. on Ceramics 27–30 Nov. 1982 Bangalore (India) Vol. I Part IIGoogle Scholar
  3. Demont D S and Hancock P 1971Proc. Br. Ceram. Soc. Google Scholar
  4. Fielder W L, Kantz H E, Fordyce J S and Singer J 1975J. Electrochem. Soc. 122 528CrossRefGoogle Scholar
  5. Gordon R S, McEntire B J, Miller M L and Virkar A V 1977Mater. Sci. Res. Vol. 11, p. 1405Google Scholar
  6. Hodge J D 1983J. Am. Ceram. Soc. 66 166CrossRefGoogle Scholar
  7. Kalsi H S, Tandon R P and Das B K 1983Symp. on Adv. in electrochemical Energy Storage and Conversion 21-1-1983, CECRI, Karaikudi (India)Google Scholar
  8. Kummer J T 1972Prog. Solid State Chem. 7 141CrossRefGoogle Scholar
  9. Kummer J T 1972Prog. Solid State Chem. (ed.) H Reiss and J O McCaldin (New York: Pergamon Press) Vol. 7Google Scholar
  10. Kummer J T and Weber N 1968Soc. Automotive Eng. Trans. 76 1003Google Scholar
  11. Kvachkov R, Yanakiev A, Poulieff C N, Bakanor I, Yankulov P D and Budevski E 1981J. Mater. Sci. 16 2710CrossRefGoogle Scholar
  12. Kvachkov R, Yanakiev A, Poulieff C N, Yankulov P D, Rashkov S and Budevski E 1982Solid State Ionics 7 151CrossRefGoogle Scholar
  13. Ray A K and Subbarao E C 1975Mater. Res. Bull. Vol.10 583CrossRefGoogle Scholar
  14. Sudworth J L, Tilley A R and South K D 1973East ion transport in solids (ed.) W Van Gool (Amsterdam: North Holland) p. 581Google Scholar
  15. Weber N 1974Energy Convers. 14 1CrossRefGoogle Scholar
  16. Whittingham M S and Huggins R A 1971J. Electrochem. Soc. 118 1CrossRefGoogle Scholar
  17. Wynn Jones I and Miles L T 1971Proc. Br. Ceram. Soc. 161Google Scholar
  18. Yao Y F V and Kummer J T 1967J. Inorg. Nucl. Chem. 29 2453CrossRefGoogle Scholar
  19. Youngblood C E, Virkar A V, Canon W R and Gordon R S 1977Am. Ceram. Soc. Bull. 56 206Google Scholar

Copyright information

© Indian Academy of Sciences 1984

Authors and Affiliations

  • H S Kalsi
    • 1
  • R P Tandon
    • 1
  • Balbir Singh
    • 1
  • R C Goel
    • 1
  • B K Das
    • 1
  1. 1.National Physical LaboratoryNew DelhiIndia

Personalised recommendations