Advertisement

Bulletin of Materials Science

, Volume 6, Issue 2, pp 369–393 | Cite as

Structural disorder and solid state transformations in single crystals of Zn x Cd1−x S and Zn x Mn1−x S

  • M T Sebastian
  • P Krishna
Phase Transitions

Abstract

Single crystals of Zn x Cd1−x S and Zn x Mn1−x S were grown from the vapour phase at 1100°C in the rangex=0·9 to 1. X-ray characterization shows that polytypes and disordered structures occur in Zn x Cd1−x S forx ≥ 0·94, whereas Zn x Mn1−x S displays disordered and polytype structures in the entire rangex=0·9 to 1. It is observed that Zn x Cd1−x S and Zn x Mn1−x S undergo a 2H-6H solid state transformation on annealing in vacuum around 600°C. Experimental analysis of the intensity distribution along the 10·L reciprocal lattice row as recorded on a single crystal diffractometer from partially transformed crystals shows that the mechanism of the transformation cannot be explained in terms of the one-parameter models of non-random faulting reported earlier. A two-parameter theoretical model with α representing the probability of random insertion of a fault in the 2H structure and β representing the probability of the growth of the 6H nucleus, is developed both for a deformation mechanism and a layer displacement mechanism. It is found that the theoretical model of non-random deformation faulting with β ≫ α approximates the actual mechanism of transformation in these crystals.

Keywords

Structural disorder single crystals polytype structures theoretical models 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brodin M S, Budnik P I, Vitrikhoski N I and Zakreveskii S V 1970Sov. Phys. Semiconductors 4 435Google Scholar
  2. Burton L C and Hench T L 1976Appl. Phys. Lett. 29 612CrossRefGoogle Scholar
  3. Chandrasekharaiah M N and Krishna P 1969J. Cryst. Growth 5 213CrossRefGoogle Scholar
  4. Cherin P, Lind E L and Davies E A 1970J. Electrochem. Soc. 117 233CrossRefGoogle Scholar
  5. Daniels B K 1966Philos. Mag. 14 487CrossRefGoogle Scholar
  6. Domeus P, Cadene M, Cohen C W and Martinuzzi S 1977Photovoltaic solar energy conversion, Proc. Conf., Luxemburg, p. 168Google Scholar
  7. Holloway H 1969J. Appl. Phys. 40 4313CrossRefGoogle Scholar
  8. Inouguchi T, Takeda M, Kakihara Y and Yoshira M 1974Stable high luminescence thin film electroluminescent panels in Dig. SID Int. Symp., Los Angeles, CA. Soc. for Inf. Disp. p. 86Google Scholar
  9. Jagodzinski H 1949Acta Crystallogr. 2 208CrossRefGoogle Scholar
  10. Juza V R, Rabenau A and Pascher G 1956Z. Anorg. Allg. Chem. 285 611Google Scholar
  11. Kawaguchi H, Ito H and Inaba H 1976Opt. Commun. 16 6CrossRefGoogle Scholar
  12. Kozielski M J 1976J. Cryst. Growth 30 86CrossRefGoogle Scholar
  13. Krishna P and Marshall R C 1971J. Cryst. Growth 9 319,ibid 11 147CrossRefGoogle Scholar
  14. Kröger F A 1939Z. Kristallogr. A 100 132ibid 543Google Scholar
  15. Lele S 1980Acta Crystallogr. A36 584Google Scholar
  16. Lele S and Pandey D 1982Proc. Int. Conf. on Solid to solid phase transformations. AIME Warandale, p. 1487Google Scholar
  17. Lutz H P and Becker W 1977J. Solid State Chem. 20 183CrossRefGoogle Scholar
  18. Mardix S and Steinberger I T 1966Isr. J. Chem. 3 243Google Scholar
  19. Mehmed F and Heraldson H 1938Z. Anorg. Chem. 235 193CrossRefGoogle Scholar
  20. Müller H 1952News Jahrb. Miner. Abh. 84 43Google Scholar
  21. Pandey D and Krishna P 1977J. Phys. D10 2057Google Scholar
  22. Pandey D, Lele S and Krishna P 1980Proc. R. Soc. (London) A369 435, 451, 463Google Scholar
  23. Prasad B and Lele S 1971Acta Crystallogr. 27 54CrossRefGoogle Scholar
  24. Roomians C J M 1963J. Inorg. Nucl. Chem. 25 253CrossRefGoogle Scholar
  25. Schnaase H 1933Z. Phys. Chem. B20 89Google Scholar
  26. Sebastian M T, Pandey D and Krishna P 1982Phys. Status Solidi 71 633CrossRefGoogle Scholar
  27. Sebastian M T and Krishna P 1983Solid State. Commun. 48 879CrossRefGoogle Scholar
  28. Sebastian M T and Krishna P 1983aBull. Mater. Sci. 5 257Google Scholar
  29. Sebastian M T and Krishna P 1983bPhys. Status Solidi 79 271CrossRefGoogle Scholar
  30. Secco d’Aragona F S, Delavignette P and Amelinckx S 1966Phys. Status Solidi K14 115CrossRefGoogle Scholar
  31. Shachar G, Mardix S and Steinberger I T 1968J. Appl. Phys. 39 2485CrossRefGoogle Scholar
  32. Singer J 1963Acta Crystallogr. 16 601CrossRefGoogle Scholar
  33. Theis D 1981J. Lumines. 23 191CrossRefGoogle Scholar
  34. Yoshikawa A and Sakai Y 1976Jpn. J. Appl. Phys. 15 1861CrossRefGoogle Scholar

Copyright information

© The Indian Academy of Sciences 1984

Authors and Affiliations

  • M T Sebastian
    • 1
  • P Krishna
    • 1
  1. 1.Physics DepartmentBanaras Hindu UniversityVaranasiIndia

Personalised recommendations