Advertisement

Bulletin of Materials Science

, Volume 6, Issue 2, pp 327–338 | Cite as

Amorphous state ferroelectricity, magnon scattering and phase stability in microparticle materials

  • M S Multani
  • P Ayyub
  • V R Palkar
  • M R Srinivasan
  • V Saraswati
  • R Vijayaraghavan
  • DO Shah
Microparticle Materials

Abstract

Microparticles and micrograin ceramics show features distinct from the usual-sized polycrystalline materials. Amorphous state material combined with microparticle size for Pb(Zr0.51 Ti0.49)O3 mimics the dielectric behaviour of crystalline ferroelectricity in ABO3 compounds. Fine-grained Y3Fe5O12 (yig) synthesized by pressure sintering ofyig microparticles exhibit spinwave relaxation due to transit time across grain diameter. Applying microemulsion techniques for microparticle synthesis,γ-Fe2O3 has been synthesized. The phase stability fractionγ-Fe2O3/α-Fe2O3 is found to be a function of particle size. At very small sizesγ-Fe2O3 becomes amorphous, leading to interesting Mössbauer studies.

Keywords

Microparticle microemulsion ferroelectricity ferrimagnetism magnon scattering lead zirconate titanate yttrium iron garnet gamma-Fe2O3 Mössbauer spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bhide V G and Multani M S 1965Phys. Rev. A139 1983CrossRefGoogle Scholar
  2. Borgese C 1977J. Physique 38 261Google Scholar
  3. Glass A M, Lines M E, Nassau K and Shiever 1977aJ. Appl. Phys. Lett. 31 249CrossRefGoogle Scholar
  4. Glass A M, Nassau K and Shiever 1977bJ. Appl. Phys. 48 5213CrossRefGoogle Scholar
  5. Globus A and Guyot M 1972Phys. Status Solidi 52 427CrossRefGoogle Scholar
  6. Haneda K and Morrish A H 1977Solid State Commun. 22 779CrossRefGoogle Scholar
  7. Hudson A S 1970J. Phys. D:3 251CrossRefGoogle Scholar
  8. Inui T, Takamizawa H, Ogasawara and Fuse T 1975AIP Conf. Proc. 24 483CrossRefGoogle Scholar
  9. Känzig W, Anilkar M and Brugger H R 1954Helv. Phys. Acta 27 99Google Scholar
  10. Känzig W 1955Phys. Rev. 98 549CrossRefGoogle Scholar
  11. Lines M E 1977Phys. Rev. B15 388Google Scholar
  12. Lines M E 1978Phys. Rev. B17 1984Google Scholar
  13. Multani M S, Sharma D K, Palkar V R, Gokarn S G and Gurjar A 1981Mater. Res. Bull. 16 1535CrossRefGoogle Scholar
  14. Patton C E 1970J. Appl. Phys. 41 1637CrossRefGoogle Scholar
  15. Röschmann P 1976AIP Conf. Proc. 34 253CrossRefGoogle Scholar
  16. Safran S A and Turkevich L A 1983Phys. Rev. Lett. 50 1930CrossRefGoogle Scholar
  17. Sawado E 1981Proc. International Conf. on Ferrites, University of Tokyo Press, Tokyo p. 818Google Scholar
  18. Schlömann J 1958J. Phys. Chem. Solids 6 632Google Scholar
  19. Scotter D G 1972J. Phys. D:6 93CrossRefGoogle Scholar
  20. Shah D O 1981Surface phenomena in enhanced oil recovery, (New York, Plenum Press)Google Scholar
  21. Srinivasan M R, Multani M S, Ayyub P and Vijayaraghavan R 1983Ferroelectrics (to appear)Google Scholar
  22. Takashige M and Nakamura 1980J. Phys. Soc. Jpn 49B 143Google Scholar
  23. Vrehen Q H F, Beljers H G and DeLau J G M 1969IEEE Trans. MAG-5 617Google Scholar

Copyright information

© The Indian Academy of Sciences 1984

Authors and Affiliations

  • M S Multani
    • 1
  • P Ayyub
    • 1
  • V R Palkar
    • 1
  • M R Srinivasan
    • 1
  • V Saraswati
    • 1
  • R Vijayaraghavan
    • 1
  • DO Shah
    • 1
    • 2
  1. 1.Materials Research GroupTata Institute of Fundamental ResearchBombayIndia
  2. 2.Department of ChemistryUniversity of FloridaGainesvilleUSA

Personalised recommendations