Molecular Neurobiology

, Volume 19, Issue 2, pp 151–179 | Cite as

Biochemical studies of the structure and function of theN-methyl-D-aspartate subtype of glutamate receptors

  • Anthone W. Dunah
  • Robert P. Yasuda
  • Jianhong Luo
  • Yuehua Wang
  • Kate L. Prybylowski
  • Barry B. Wolfe


TheN-methyl-D-aspartate (NMDA) subtype of glutamate receptors plays a key role in synaptic transmission, synaptic plasticity, synaptogenesis, and excitotocity in the mammalian central nervous system. The NMDA receptor channel is formed from two gene products from two glutamate receptor subunit families, termed NR1 and NR2. Although the subunit composition of native NMDA receptors is incompletely understood, electrophysiological studies using recombinant receptors suggest that functional NMDA receptors consist of heteromers containing combinations of NR1, which is essential for channel activity, and NR2, which modulates the properties of the channels. The lack of agonists or antagonists selective for a given subunit of NMDA receptors has made it difficult to understand the subunit expression, subunit composition, and posttranslational modification mechanisms of native NMDA receptors. Therefore, most studies on NMDA receptors that examine regional expression and ontogeny have been focused at the level of the mRNAs encoding the different subunits using northern blotting, ribonuclease protection, andin situ hybridization techniques. However, the data from these studies do not provide clear information about the resultant subunit protein. To directly examine the protein product of the NMDA receptor subunit genes, the development of subunit-specific antibodies using peptides and fusion proteins has provided a good approach for localizing, quantifying, and characterizing the receptor subunits in tissues and transfected cell lines, and to study the subunit composition and the functional effects of posttranslational processing of the NMDA subunits, particularly the phosphorylation profiles of NMDA glutamate receptors.

Index Entries

Antibodies NMDA western blot immunoprecipitation tyrosine phosphorylation regional expression developmental expression subunit composition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hayashi T. (1954) Effects of sodium glutamate on the nervous system.Keio J. Med. 3, 183–192.Google Scholar
  2. 2.
    Curtis D. R., Phillis J. W., and Watkins J. C. (1959) Chemical excitation of spinal neurons.Nature 183, 611, 612.PubMedCrossRefGoogle Scholar
  3. 3.
    Monaghan D. T., Bridges R. J., and Cotman C. W. (1989) The excitatory amino acid receptors: their classes, pharmacology, and distinct properties in the function of the central nervous system.Ann. Rev. Pharmacol. Toxicol. 29, 365–402.CrossRefGoogle Scholar
  4. 4.
    Collingridge G. L. and Lester R. A. J. (1989) Excitatory amino acid receptors in the vertebrate central nervous system.Pharmacol. Rev. 41, 143–210.PubMedGoogle Scholar
  5. 5.
    Moriyoshi K., Masu M., Ishii T., Shigemoto R., Mizuno N., and Nakanishi S. (1991) Molecular cloning and characterization of the rat NMDA receptors.Nature 354, 31–37.PubMedCrossRefGoogle Scholar
  6. 6.
    Ascher P. and Nowak L. (1988) The role of divalent cations in the N-methyl-D-aspartate responses of mouse central neurons.J. Physiol. 399, 247–266.PubMedGoogle Scholar
  7. 7.
    Stern P., Behe, P., Schoepfer R., and Colquhoun D. (1992) Single-channel conductances of NMDA receptors expressed from cloned cDNAs: comparison with native receptors.Proc. R. Soc. London Ser. B 250, 271–277.CrossRefGoogle Scholar
  8. 8.
    Burnashev N., Schoepfer R., Monyer H., Ruppersberg J. P., Gunther W., Seeburg P. H., and Sakmann B. (1992) Control by asparagine residues of calcium permeability and magnesium blockade in the NMDA receptors.Science 257, 1415–1419.PubMedCrossRefGoogle Scholar
  9. 9.
    Monyer H., Burnashev H., Laurie D. J., Sakmann B., and Seeburg P. H. (1994) Developmental and regional expression in the rat brain and functional properties of four NMDA receptors.Neuron 12, 529–540.PubMedCrossRefGoogle Scholar
  10. 10.
    Bliss T. V. P. and Collingridge G. L. (1993) A synaptic model of memory: long-term potentiation in the hippocampus.Nature 361, 31–39.PubMedCrossRefGoogle Scholar
  11. 11.
    Komuro H. and Rakic P. (1993) Modulation of neuronal migration by NMDA receptors.Science 260, 95–97.PubMedCrossRefGoogle Scholar
  12. 12.
    Sheetz A. J. and Constantine-Paton M. (1994) Modulation of NMDA receptor function: implications for vertebrate neuronal development.FASEB J. 8, 745–752.Google Scholar
  13. 13.
    McBain C. J. and Mayer M. L. (1994) N-methyl-D-aspartic acid receptor structure and function.Physiol. Rev. 74, 723–760.PubMedGoogle Scholar
  14. 14.
    Choi D. W. (1988) Glutamate neurotoxicity and diseases of the nervous system.Neuron 1, 623,624.PubMedCrossRefGoogle Scholar
  15. 15.
    Dingledine R., McBain C. J., and McNamara J. O. (1990) Excitatory amino acid receptors in epilepsy.Trends Pharmacol. Sci. 11, 334–338.PubMedCrossRefGoogle Scholar
  16. 16.
    Meldrum B. and Garthwaite J. (1990) Excitatory amino acid neurotoxicity and degenerative diseases.Trends Pharmacol. Sci. 11, 379–387.PubMedCrossRefGoogle Scholar
  17. 17.
    Ulas J., Brunner L. C., Geddes J. W., Choe W., and Cotman C. W. (1992) N-methyl-D-aspartate receptor complex in the hippocampus of elderly, normal individuals and those with Alzheimer's disease.Neuroscience 49, 45–61.PubMedCrossRefGoogle Scholar
  18. 18.
    Lipton S. A., Choi Y. B., Pan Z. H., Lei S. Z., Chen H. S., Sucher N. J., Loscalzo J., Singel D. J., and Stamler J. S. (1993) A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds.Nature 364, 626–632.PubMedCrossRefGoogle Scholar
  19. 19.
    Meldrum B. S. (1994) The role of glutamate in epilepsy and other central nervous system disorders.Neurology 44, 14–23.Google Scholar
  20. 20.
    Yamazaki M., Mori H., Araki K., Mori J., and Mishina M. (1992) Cloning, expression and modulation of a mouse NMDA receptor subunit.FEBS Lett. 300, 39–45.PubMedCrossRefGoogle Scholar
  21. 21.
    Ikeda K., Nagasawa M., Mori H., Araki K., Sakimura K., Watanabe M., Inoue Y., and Mishina M. (1992) Cloning and expression of the e4 subunit of the NMDA receptor channel.FEBS Lett. 313, 34–38.PubMedCrossRefGoogle Scholar
  22. 22.
    Kutsuwada T., Kashiwabuchi N., Mori H., Sakimura K., Kushiya E., Araki K., Meguro H., Masaki H., Kumanishi T., Arakawa M., and Mishina M. (1992) Molecular diversity of the NMDA receptor channel.Nature 358, 36–41.PubMedCrossRefGoogle Scholar
  23. 23.
    Monyer H., Sprengel R., Schoepfer R., Herb A., Higuchi M., Lomeli H., Burnashev N., Sakmann B., and Seeburg P. H. (1992) Heteromeric NMDA receptors: molecular and functional distinction of subtypes.Science. 256, 1217–1221.PubMedCrossRefGoogle Scholar
  24. 24.
    Ishii T., Moriyoshi K., Sugihara H., Sakurada K., Kadotani H., Yokoi M., Akazawa C., Shigemoto R., Mizuno N., Masu M., and Nakanishi S. (1993) Molecular characterization of the family of the N-methyl-D-aspartate receptor subunits.J. Biol. Chem. 268, 2836–2843.PubMedGoogle Scholar
  25. 25.
    Sugihara H., Moriyoshi K., Ishii T., Masu M., and Nakanishi S. (1992) Structures and properties of seven isoforms of the NMDA receptor generated by alternative splicing.Biochem. Biophys. Res. Commun. 185, 826–832.PubMedCrossRefGoogle Scholar
  26. 26.
    Hollmann M., Boulter J., Maron C., Beasley L., Sullivan J., Pecht G., and Heinemann S. (1993) Zinc potentiates agonist-induced currents at certain splice variants of NMDA receptor.Neuron 10, 943–954.PubMedCrossRefGoogle Scholar
  27. 27.
    Anantharam V., Panchal, R. G., Wilson A., Kolchine V. V., Treistman S. N., and Bayley H. (1992) Combinatorial RNA splicing alters the surface charge on the NMDA receptor.FEBS Lett. 305, 27–30.PubMedCrossRefGoogle Scholar
  28. 28.
    Durand G. M., Gregor P., Zheng X., Bennett M. V. L., Uhl G. R., and Zukin R. S. (1992) Cloning of an apparent splice variant of the rat N-methyl-D-aspartate receptor NMDAR1 with altered sensitivity to polyamines and activators of protein kinase C.Proc. Natl. Acad. Sci. USA 89, 9359–9363.PubMedCrossRefGoogle Scholar
  29. 29.
    Durand G. M., Bennett M. V. L., and Zukin R. S. (1993) Splice variants of the N-methyl-D-aspartate receptor NR1 identify domains involved in regulation by polyamines and protein kinase C.Proc. Natl. Acad. Sci. USA 90, 6731–6735.PubMedCrossRefGoogle Scholar
  30. 30.
    Nakanishi S. (1992) Molecular diversity of glutamate receptors and implications for brain function.Science 258, 597–603.PubMedCrossRefGoogle Scholar
  31. 31.
    Meguro M., Mori H., Araki K., Kushiya E., Kuzuwada T., Yamazaki M., Kumanishi T., Arakawa T., Sakimura K., and Mishina M. (1992) Functional characterization of a heteromeric NMDA receptor channel expressed from cloned cDNAs.Nature 357, 70–74.PubMedCrossRefGoogle Scholar
  32. 32.
    Soloview M. M. and Barnard E. A. (1997) Xenopus oocytes express a unitary glutamate receptor endogenously.J. Mol. Biol. 273, 14–18.CrossRefGoogle Scholar
  33. 33.
    Laurie D. J. and Seeburg P. H. (1994) Ligand affinities at recombinant N-methyl-D-aspartate receptors depend on subunit composition.Eur. J. Pharmacol. 268, 335–345.PubMedCrossRefGoogle Scholar
  34. 34.
    Williams K. (1993) Ifenprodil discriminates subtypes of the N-methyl-D-aspartate receptor: selectivity and mechanisms at recombinant heteromeric receptors.Mol. Pharmacol. 44, 851–859.PubMedGoogle Scholar
  35. 35.
    Williams K. (1995) Pharmacological characterization of recombinant N-methyl-D-aspartate receptors containing the e4 (NR2D) subunit.Neurosci. Lett. 184, 181–184.PubMedCrossRefGoogle Scholar
  36. 36.
    Williams K., Russell S. L., Shen Y. M., and Molinoff P. B. (1993) Developmental switch in the expression of NMDA receptors occurs in vivo and in vitro.Neuron 10, 267–278.PubMedCrossRefGoogle Scholar
  37. 37.
    Ilyin V., Whittermore E. R., Guastella J., Weber E., and Woodward R. M. (1996) Subtype-selective inhibition of N-methyl-D-aspartate receptors by haloperidol.Mol. Pharmacol. 50, 1541–1550.PubMedGoogle Scholar
  38. 38.
    Vicini S., Wang J. F., Li J. H., Zhu W. J., Wang Y. H., Luo J. H., Wolfe B. B., and Grayson D. R. (1998) Functional and pharmacological differences between recombinant NMDA receptors.J. Neurophysiol. 79, 555–566.PubMedGoogle Scholar
  39. 39.
    Sheng M., Cummings J., Roldan L. A., Jan Y. N., and Jan L. Y. (1994) Changing subunit composition of heteromeric NMDA receptors during development of rat cortex.Nature 368, 144–147.PubMedCrossRefGoogle Scholar
  40. 40.
    Tingley W. G., Roche K. W., Thompson A. K., and Huganir R. L. (1993) Regulation of NMDA receptor phosphorylation by alternative splicing of the C-terminal domain.Nature 364, 70–73.PubMedCrossRefGoogle Scholar
  41. 41.
    Petralia R. S., Yokotani N., and Wenthold R. J. (1994) Light and electron microscope distribution of the NMDA receptor subunit NMDA R1 in the rat nervous system using a selective antipeptide antibody.J. Neurosci. 14, 667–696.PubMedGoogle Scholar
  42. 42.
    Petralia R. S., Wang Y.-H., and Wenthold R. J. (1994) The NMDA receptor subunits NR2A and NR2B show histological and ulstructural localization patterns similar to those of NR1.J. Neurosci. 14, 6102–6120.PubMedGoogle Scholar
  43. 43.
    Wang Y., Bosy T. Z., Yasuda R. P., Grayson D. R., Vicini S., Pizzorusso T., and Wolfe B. B. (1995) Characterization of NMDA receptor subunit-specific antibodies: distribution of NR2A and NR2B receptor subunits in rat brain and ontogenic profile in the cerebellum.J. Neurochem. 65, 176–183.PubMedCrossRefGoogle Scholar
  44. 44.
    Lau L-F. and Huganir R. L. (1995) Differential tyrosine phosphorylation of N-methyl-D-aspartate receptor subunits.J. Biol. Chem. 270, 20,036–20,041.Google Scholar
  45. 45.
    Portera-Cailliau C., Price D. L., and Martin L. J. (1996) N-methyl-D-aspartate receptor proteins NR2A and NR2B are differentially distributed in the developing rat central nervous system as revealed by subunit-specific antibodies.J. Neurochem. 66, 692–700.PubMedCrossRefGoogle Scholar
  46. 46.
    Luo J., Bosy T. Z., Wang Y., Yasuda R. P., and Wolfe B. B. (1996) Ontogeny of NMDA R1 subunit protein expression in five regions of rat brain.Dev. Brain Res. 92, 10–17.CrossRefGoogle Scholar
  47. 47.
    Luo J., Wang Y. H., Yasuda R. P., Dunah A. W., and Wolfe B. B. (1997) The majority of N-methyl-D-aspartate receptor complexes in adult rat cerebral cortex contain at least three different subunits (NR1/NR2A/NR2B).Mol. Pharmacol. 51, 79–86.PubMedGoogle Scholar
  48. 48.
    Chazot P. L., Cik M., and Stephenson F. A. (1992) Immunological detection of the NMDAR1 glutamate receptor subunit expressed in human embryonic kidney 293 cells and in rat brain.J. Neurochem. 59, 1176–1178.PubMedCrossRefGoogle Scholar
  49. 49.
    Brose N., Gasic G. P., Vetter D. E., Sullivan J. M., and Heinemann S. F. (1993) Protein chemical characterization and immunocytochemical localization of the NMDA receptor subunit NMDA R1.J. Biol. Chem. 268, 22,663–22,671.Google Scholar
  50. 50.
    Cik M., Chazot P. L., and Stephenson F. A. (1993) Optimal expression of cloned NMDAR1/NMDAR2A heteromeric glutamate receptors: biochemical characterization.Biochem. J. 296, 877–883.PubMedGoogle Scholar
  51. 51.
    Wenzel A., Scheurer L., Kunzi R., Fritschy J. M., Mohler H., and Benke D. (1995) Distribution of NMDA receptor subunit proteins NR2A, 2B, 2C and 2D in rat brain.NeuroReport 7, 45–48.PubMedGoogle Scholar
  52. 52.
    Didier M., Xu M., Berman S. A., and Bursztajn S. (1995) Differential expression and co-assembly of NMDAz1 and e subunits in the mouse cerebellum during postnatal development.NeuroReport. 6, 2255–2259.PubMedCrossRefGoogle Scholar
  53. 53.
    Wenzel A., Villa M., Mohler H., and Benke D. (1996) Developmental and regional expression of NMDA receptor subtypes containing the NR2D subunit in rat brain.J. Neurochem. 66, 1240–1248.PubMedCrossRefGoogle Scholar
  54. 54.
    Dunah A. W., Yasuda R. P., Wang Y-H., Luo J., Davila-Garcia M. I., Gbadegesin M., Vicini S., and Wolfe B. B. (1996) Regional and ontogenic expression of the NMDA receptor subunit NR2D protein in rat brain using a subunit-specific antibody.J. Neurochem. 67, 2335–2345.PubMedCrossRefGoogle Scholar
  55. 55.
    Wenzel A., Fritschy J. M., Mohler H., and Benke D. (1997) NMDA receptor heterogeneity during postnatal development of the rat brain: differential expression of the NR2A, NR2B, and NR2C subunit proteins.J. Neurochem. 68, 469–478.PubMedCrossRefGoogle Scholar
  56. 56.
    Dunah A. W., Luo J., Wang Y-H., Yasuda R. P., and Wolfe B. B. (1998) Subunit composition of NMDA receptors in the rat central nervous system that contain the NR2D subunit.Mol. Pharmacol. 53, 429–437.PubMedGoogle Scholar
  57. 57.
    Blahos J. II and Wenthold R. J. (1996) Relationship between N-methyl-D-aspartate receptor NR1 splice variants and NR2 subunits.J. Biol. Chem. 271, 15,669–15,674.Google Scholar
  58. 58.
    Hall R. A. and Soderling T. R. (1997) Differential surface expression and phosphorylation of the N-methyl-D-aspartate receptor subunits NR1 and NR2 in cultured hippocampal neurons.J. Biol. Chem. 272, 4135–4140.PubMedCrossRefGoogle Scholar
  59. 59.
    Tingley W. G., Ehlers M. D., Kameyama K., Doherty C., Ptak J. B., Riley C. T., and Huganir R. L. (1997) Characterization of protein kinase A and protein kinase C phosphorylation of the N-methyl-D-aspartate receptor NR1 subunit using phosphorylation site-specific antibodies.J. Biol. Chem. 272, 5157–5166.PubMedCrossRefGoogle Scholar
  60. 60.
    Moon I. S., Apperson M. L., and Kennedy M. B. (1994) The major tyrosine-phosphorylated protein in the postsynaptic density fraction is N-methyl-D-aspartate receptor subunit 2B.Proc. Natl. Acad. Sci. USA 91, 3954–3958.PubMedCrossRefGoogle Scholar
  61. 61.
    Rostas J. A. P., Brent V. A., Voss K., Errington M. L., Bliss T. V. P., and Gurd J. W. (1996) Enhanced tyrosine phosphorylation of the 2B subunit of the N-methyl-D-aspartate receptor in long term-potentiation.Proc. Natl. Acad. Sci. USA 93, 10,452–10,456.CrossRefGoogle Scholar
  62. 62.
    Rosenblum K., Dudai Y., and Richter-Levin G. (1996) Long-term potentiation increases tyrosine phosphorylation of the N-methyl-D-aspartate receptor subunit 2B in rat dentate gyrusin vivo.Proc. Natl. Acad. Sci. USA93, 10,457–10,462.Google Scholar
  63. 63.
    Dunah A. W., Yasuda R. P., and Wolfe B. B. (1998) Developmental regulation of the tyrosine phosphorylation of the NR2D NMDA glutamate receptor subunit in the rat central nervous system.J. Neurochem. 71, 1926–1934.PubMedCrossRefGoogle Scholar
  64. 64.
    Tam P. J. (1988) Synthetic peptide vaccine design: synthesis and properties of a high-density multiple antigenic peptide system.Proc. Natl. Acad. Sci. USA 85, 5409–5413.PubMedCrossRefGoogle Scholar
  65. 65.
    Posnett D. N., McGrath H., and Tam P. J. (1988) A novel method for producing anti-peptide antibodies.J. Biol. Chem. 263, 1719–1725.PubMedGoogle Scholar
  66. 66.
    Tolle T. R., Berthele A., Zieglgansberger W., Seeburg P. H., and Wisden W. (1993) The differential expression of 16 NMDA and non-NMDA receptor subunits in the rat spinal cord and in periaqueductal grey.J. Neurosci. 13, 5009–5028.PubMedGoogle Scholar
  67. 67.
    Standaert D. G., Testa C. M., Young A. B., and Penny J. B. Jr. (1994) Organization of N-methyl-D-aspartate glutamate receptor gene expression in the basal ganglia of the rat.J. Comp. Neurol. 343, 1–16.PubMedCrossRefGoogle Scholar
  68. 68.
    Aoki C., Venkatesan C., Go C.-G., Mong J. A., and Dawson T. M. (1994) Cellular and subcellular localization of NMDA-R1 subunit immunoreactivity in the visual cortex of adult and neonatal rats.J. Neurosci. 14, 5202–5222.PubMedGoogle Scholar
  69. 69.
    Watanabe M., Inoue Y., Sakimura K., and Mishina M. (1993) Distinct spatio-temporal distributions of the NMDA receptor channel subunit mRNAs in the brain.Ann. NY Acad. Sci. 707, 463–466.PubMedCrossRefGoogle Scholar
  70. 70.
    Monaghan D. T. and Cotman C. W. (1985) Distribution of N-methyl-D-aspartate-sensitive L-[H]glutamatebinding sites in rat brain.J. Neurosci. 11, 2909–2919.Google Scholar
  71. 71.
    Boje K. M. and Skolnick P. (1992) Ontogeny of glycine-enhanced [3H]MK-801 binding to N-methyl-D-aspartate receptor-coupled ion channels.Dev. Brain Res. 65, 51–56.CrossRefGoogle Scholar
  72. 72.
    Morin A. M., Hattori H., Wasterlain C. G., and Thomson D. (1989) [3H]MK-801 binding sites in neonate rat brain.Brain Res. 487, 376–379.PubMedCrossRefGoogle Scholar
  73. 73.
    Liu M., Wang H., Sheng M., Jan L. Y., Jan Y. N., and Basbaum A. I. (1994) Evidence for presynaptic N-methyl-D-aspartate autoreceptors in the spinal cord dorsal horn.Proc. Natl. Acad. Sci. USA91, 8383–8387.PubMedCrossRefGoogle Scholar
  74. 74.
    Cull-Candy S. G., Brickley S. G., Misra C., Feldmeyer D., Momiyama A., and Farrant M. (1998) NMDA receptor diversity in the cerebellum: identification of subunits contributing to functional receptors.Neuropharmacology 37, 1369–1380.PubMedCrossRefGoogle Scholar
  75. 75.
    Buller A. L. and Monaghan D. T. (1997) Pharmacological heterogeneity of NMDA receptors: characterization of NR1a/NR2D heteromers expressed inXenopus oocyte.Eur. J. Pharmacol. 320, 87–94.PubMedCrossRefGoogle Scholar
  76. 76.
    Sakurai S. Y., Penny J. B., and Young A. B. (1993) Regional distinct N-methyl-D-aspartate receptors distinguished by quantitative autoradiography of [3H]MK-801 binding in rat brain.J. Neurochem. 60, 1344–1353.PubMedCrossRefGoogle Scholar
  77. 77.
    Subramaniam S. and McGonigle P. (1991) Quantitative autoradiographic characterization of the binding of (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine ([3H]MK-801) in rat brain: regional effects of polyamines.J. Pharmacol. Exp. Ther. 256, 811–819.PubMedGoogle Scholar
  78. 78.
    Monaghan D. T. (1991) Differential stimulation of [3H]MK-801 binding to subpopulations of NMDA receptors.Neurosci. Lett. 122, 21–24.PubMedCrossRefGoogle Scholar
  79. 79.
    Carmignoto G. and Vicini S. (1992) Activity-dependent decrease in NMDA responses during development of the visual cortex.Science 258, 1007–1011.PubMedCrossRefGoogle Scholar
  80. 80.
    Pujic Z., Matsumoto I., and Wilce P. A. (1993) Expression of the gene coding for the NR1 subunit of NMDA receptor during rat brain development.Neurosci. Lett. 162, 67–70.PubMedCrossRefGoogle Scholar
  81. 81.
    Riva M. A., Tascedda F., Molteni R., and Racagni G. (1994) Regulation of NMDA receptor subunit mRNA expression in the brain during postnatal development.Mol. Brain Res. 25, 209–216.PubMedCrossRefGoogle Scholar
  82. 82.
    Zhong J., Carrozza D. P., Williams K., Pritchett D. B., and Molinoff P. B. (1995) Expression of mRNAs encoding subunits of the NMDA receptor in developing rat brain.J. Neurochem. 64, 531–539.PubMedCrossRefGoogle Scholar
  83. 83.
    Sucher N. J., Brose N., Deitcher D. L., Awobuluyi M., Gasic G. P., Bading H., Cepco C. L., Greenberg M. E., Jahn R., Heinemann S. F., and Lipton S. A. (1993) Expression of endogenous NMDAR1 transcripts without receptor protein suggests post-translational control in PC12 cells.J. Biol. Chem. 268, 22,299–22,304.Google Scholar
  84. 84.
    Akazawa C., Shigemoto R., Bessho Y., Nakanishi S., and Mizuno N. (1994) Differential expression of five N-methyl-D-aspartate receptor subunit mRNAs in the cerebellum of developing and adult rats.J. Comp. Neurol. 347, 150–160.PubMedCrossRefGoogle Scholar
  85. 85.
    Watanabe M., Inoue Y., Sakimura K., and Mishina M. (1992) Developmental changes in the distribution of NMDA receptor channel subunit mRNAs.NeuroReport 3, 1138–1140.PubMedCrossRefGoogle Scholar
  86. 86.
    Watanabe M., Mishina M., and Inoue Y. (1994) Distinct spatiotemporal expressions of five NMDA receptor channel subunit mRNAs in the cerebellum.J. Comp. Neurol. 343, 513–519.PubMedCrossRefGoogle Scholar
  87. 87.
    Buller A. L., Larson H. C., Schneider B. E., Beato J. A., Morrisett R. A., and Monaghan D. T. (1994) The molecular basis of NMDA receptor subtypes: native receptor diversity is predicted by subunit composition.J. Neurosci. 14, 5471–5484.PubMedGoogle Scholar
  88. 88.
    Beaton J. A., Stemsrud K., and Monaghan D. T. (1992) Identification of a novel N-methyl-D-aspartate receptor population in the rat medial thalamus.J. Neurochem. 59, 754–757.PubMedCrossRefGoogle Scholar
  89. 89.
    Hollmann M. and Heinemann S. (1993) Cloned glutamate receptors.Annu. Rev. Neurosci. 17, 31–108.CrossRefGoogle Scholar
  90. 90.
    Chazot P. L., Coleman S. K., Cik M., and Stephenson F. A. (1994) Molecular characterization of N-methyl-D-aspartate receptors expressed in mammalian cells yields evidence for the coexistence of three subunit types within a discrete receptor molecule.J. Biol. Chem. 269, 24,403–24,409.Google Scholar
  91. 91.
    Hunter T. (1987) A thousand and one protein kinases.Cell 50, 823–829.PubMedCrossRefGoogle Scholar
  92. 92.
    Pang D. T., Wang J. K. T., Valtorta F., Benfenati F., and Greengard P. (1988) Protein tyrosine phosphorylation in synaptic vesicles.Proc. Natl. Acad. Sci. USA 85, 762–766.PubMedCrossRefGoogle Scholar
  93. 93.
    Huganir R. L. and Greengard P. (1990) Regulation of neurotransmitter receptor by desensitization protein phosphorylation.Neuron 5, 555–567.PubMedCrossRefGoogle Scholar
  94. 94.
    Chan A. C., Desai D. M., and Weiss A. (1994) The role of protein tyrosine kinases and protein tyrosine phosphatases in T cell antigen receptor signal transduction.Ann. Rev. Immunol. 12, 555–592.CrossRefGoogle Scholar
  95. 95.
    Edelman A. M., Blumenthal D. K., and Krebs E. G. (1987) Protein serine/threonine kinases.Ann. Rev. Biochem. 56, 567–613.PubMedGoogle Scholar
  96. 96.
    Swope S. L., Moss S. J., Blackstone C. D., and Huganir R. L. (1992) Phosphorylation of ligand-gated ion channels: a possible mode of synaptic plasticity.FASEB J. 6, 2514–2523.PubMedGoogle Scholar
  97. 97.
    Hunter T. and Cooper J. A. (1988) Protein tyrosine kinases.Ann. Rev. Biochem. 54, 897–930.Google Scholar
  98. 98.
    Nairn A. C., Hemmings H. C., and Greengard P. (1985) Protein kinases in the brain.Annu. Rev. Biochem. 54, 931–976.PubMedCrossRefGoogle Scholar
  99. 99.
    Huganir R. L., Miles K., and Greengard P. (1984) Phosphorylation of the nicotinic acetycholine receptor by an endogenous tyrosine-specific protein kinase.Proc. Natl. Acad. Sci. USA 81, 6963–6972.CrossRefGoogle Scholar
  100. 100.
    Maness P. F., Aubry M., Shores C. G., Frame L., and Pfenninger K. H. (1988) c-src gene product in developing rat brain is enriched in growth cone membranes.Proc. Natl. Acad. Sci. USA 85, 5011–5005.CrossRefGoogle Scholar
  101. 101.
    Wagner K. R., Mei L., and Huganir R. L. (1991) Protein tyrosine kinases and phosphotases in the nervous system.Curr. Opin. Neurobiol. 1, 65–73.PubMedCrossRefGoogle Scholar
  102. 102.
    Kohr G. and Seeburg P. H. (1996) Subtype-specific regulation of recombinant NMDA receptor-channels by protein tyrosine kinases of thesrc family.J. Physiol. 492(2), 445–452.PubMedGoogle Scholar
  103. 103.
    Levitan I. B. (1994) Modulation of ion channels by protein phosphorylation and dephosphorylation.Ann. Rev. Physiol. 56, 193–202.CrossRefGoogle Scholar
  104. 104.
    Siegelbaum S. A. (1994) Ion channel control by tyrosine phosphorylation.Curr. Biol. 4, 242–245.PubMedCrossRefGoogle Scholar
  105. 105.
    Roche K. W., Tingley W. G., and Huganir R. L. (1994) Glutamate receptor phosphorylation and synaptic plasticity.Curr. Opin. Neurobiol. 4, 383–388.PubMedCrossRefGoogle Scholar
  106. 106.
    Moss S. J., Gorrie G. H., Amato A., and Smart T. G. (1995) Modulation of GABA receptors by tyrosine phosphorylation.Nature 377, 344–348.PubMedCrossRefGoogle Scholar
  107. 107.
    O'Dell T. J., Kandel E. R., and Grant S. G. N. (1991) Long-term potentiation in the hippocampus is blocked by tyrosine kinase inhibitors.Nature 353, 558–560.PubMedCrossRefGoogle Scholar
  108. 108.
    Wang Y. T. and Salter M. W. (1994) Regulation of NMDA receptors by tyrosine kinases and phosphatases.Nature 369, 233–235.PubMedCrossRefGoogle Scholar
  109. 109.
    Yu X-M., Askalan R., Keil G. J. II., and Salter M. W. (1997) NMDA channel regulation by channel-associated protein tyrosine kinase Src.Science 275, 674–678.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1999

Authors and Affiliations

  • Anthone W. Dunah
    • 1
  • Robert P. Yasuda
    • 1
  • Jianhong Luo
    • 1
  • Yuehua Wang
    • 1
  • Kate L. Prybylowski
    • 1
  • Barry B. Wolfe
    • 1
  1. 1.Department of PharmacologyGeorgetown University School of MedicineWashington, DC

Personalised recommendations