Il Nuovo Cimento B (1971-1996)

, Volume 111, Issue 6, pp 769–781 | Cite as

Capacitance of a cylindrical system

  • G. Miano
  • L. Verolino
  • C. Visone


A wide class of electromagnetic problems can be expressed as a system of dual integral equations. These kinds of integral equations occur in boundary value problems wherein there is an integral equation for a certain region and another for the rest of the region. In this paper it is shown that the integral equation for the charge density on a hollow metallic cylinder of finite length enclosed in another cylinder of infinite length can be put into «a standard form» of dual integral equations, which can be transformed into a numerically well-posed system of linear equation by means of a Neumann series. A general method to compute the coefficients of the linear system is discussed and some plots of the charge density distributions, and of the capacitance as a function of the ratioh/r1 (half-length/radius of the cylinder) are given. The range of validity of the classical asymptotic expansion is finally discussed.


41.10.Dq Electrostatics magnetostatics 


02.30.Rz Integral equations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Sneddon I. N.,Mixed Boundary Value Problems in Potential Theory (North-Holland, Amsterdam) 1966.Google Scholar
  2. [2]
    Grinberg G. A. andShukeilo I. A.,Sov. Phys. Techn. Phys.,4 (1960) 1189.Google Scholar
  3. [3]
    Lapostolle P.,Introduction a la théorie des accélérateurs linéaires, CERN 87-09, Geneva (1987).Google Scholar
  4. [4]
    Impedance beyond cut-off, special issue ofPart Accel,25 (1990) 2.Google Scholar
  5. [5]
    Lebedev N. N. andSkal’skaya I. P.,Sov. Phys. Techn. Phys.,18 (1973) 28.ADSGoogle Scholar
  6. [6]
    Bender C. M. andBoettcher S.,J. Math. Phys.,35 (1994) 1914.MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    Eswakan K.,Proc R. Soc. London, Ser. A,429 (1980) 399.ADSCrossRefGoogle Scholar
  8. [8]
    Gradshteyn I. S. andRyzhik I. M.,Table of Integrals, Series, and Products (Academic Press) 1980.Google Scholar
  9. [9]
    Watson G. N.,A Treatise on the Theory of Bessel Functions, 2nd edition (Cambridge University Press) 1966.Google Scholar
  10. [10]
    Kanwal R. O.,Linear Integral Equations (Academic Press, New York, N.Y.) 1971.Google Scholar
  11. [11]
    Meixner J.,IEEE,20 (1972) 442.Google Scholar
  12. [12]
    DÔme G., Gianfelice E., Palumbo L., Vaccaro V. G. andVerolino L.,Nuovo Cimento A,104 (1991) 1241.Google Scholar
  13. [13]
    DÔme G., Palumbo L., Vaccaro V. G. andVerolino L.,Part. Accel,36 (1991) 161.Google Scholar
  14. [14]
    Miano G., Vaccaro V. G. andVerolino L.,J. Math. Phys.,38 (1995) 4087.MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    Fok V. A., Kapitsa P. L. andVainshtein L. A.,Sov. Phys. Techn. Phys.,4 (1960) 1077.Google Scholar
  16. [16]
    Flannery B. P., Press W. H., Teukolsky S. A. andVetterling W. T.,Numerical Recipes (Cambridge University Press) 1986.Google Scholar
  17. [17]
    Vainshtein L. A.,Sov. Phys. Techn. Phys.,7 (1963) 855.Google Scholar
  18. [18]
    Vainshtein L. A.,Sov Phys. Techn. Phys.,7 (1963) 861.Google Scholar

Copyright information

© Società Italiana di Fisica 1996

Authors and Affiliations

  • G. Miano
    • 1
    • 2
  • L. Verolino
    • 1
    • 2
  • C. Visone
    • 1
  1. 1.Dipartimento di Ingegneria ElettricaUniversitá degli Studi di Napoli «Federico II»NapoliItaty
  2. 2.Sezione di Napoli, Mostra d’OltremareINFNNapoliItaly

Personalised recommendations