Il Nuovo Cimento B (1971-1996)

, Volume 111, Issue 6, pp 723–729 | Cite as

On a variational formulation of uniformly accelerated motion in special relativity

  • R. A. Krikorian


In this paper we present a derivation of the characteristic differential equation of uniformly accelerated motion, in special relativity, from a variational principle formulated in Minkowskian velocity 4-space. Because of the constraints introduced by the theory of relativity, the variational problem is reduced to an equivalent non-parametric Lagrange problem with variable end points in a five-dimensional space. The determination of the Euler-Lagrange equations requires the use of the transversality equations.


04.20 Classical general relativity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Einstein A.,Ann. Phys. (Leipzig),17 (1905) 891.ADSCrossRefMATHGoogle Scholar
  2. [2]
    Pauli W.,Theory of Relativity (Pergamon) 1958.Google Scholar
  3. [3]
    Hill E. L.,Phys. Rev.,72 (1947) 143.ADSCrossRefGoogle Scholar
  4. [4]
    Rohrlich F.,Ann. Phys. (N.Y.),22 (1963) 169;Classical Charged Particles (Addison-Wesley) 1965.MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    Rindler W.,Phys. Rev.,119 (1960) 2082.MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    Kichenassamy S.,C. R. Acad. Sci. Paris,260 (1965) 3001.MathSciNetGoogle Scholar
  7. [7]
    Bower J. W.,Contributions to the Calculus of Variations for Years 1983–1937 (University of Chicago).Google Scholar
  8. [8]a)
    Bliss G. A.,Am. J. Math.,52 (1930) 673;MathSciNetCrossRefMATHGoogle Scholar
  9. [8]b)
    Bliss G. A.,Lectures on the Calculus of Variations (University of Chicago Press) 1946.Google Scholar
  10. [9]
    Ewing G. M.,Calculus of Variations with Applications (W. W. Norton) 1969; subsequent reprint by Dover, 1985.Google Scholar
  11. [10]
    Young L. C,Lectures on the Calculus of Variations and Optimal Control Theory (N. B. Saunders) 1969; subsequent reprint by Chelsea, 1980.Google Scholar
  12. [11]
    Caratheodory C.,Calculus of Variations and Partial Differential Equations of the First Order (Chelsea) 1982.Google Scholar
  13. [12]
    Barut A. O.,Electrodynamics and Classical Theory of Fields and Particles (MacMillan) 1964; subsequent reprint by Dover, 1980.Google Scholar

Copyright information

© Società Italiana di Fisica 1996

Authors and Affiliations

  • R. A. Krikorian
    • 1
  1. 1.Collège de FranceInstitut d’AstrophysiqueParisFrance

Personalised recommendations