Advertisement

Il Nuovo Cimento B (1971-1996)

, Volume 111, Issue 6, pp 723–729 | Cite as

On a variational formulation of uniformly accelerated motion in special relativity

  • R. A. Krikorian
Article
  • 24 Downloads

Summary

In this paper we present a derivation of the characteristic differential equation of uniformly accelerated motion, in special relativity, from a variational principle formulated in Minkowskian velocity 4-space. Because of the constraints introduced by the theory of relativity, the variational problem is reduced to an equivalent non-parametric Lagrange problem with variable end points in a five-dimensional space. The determination of the Euler-Lagrange equations requires the use of the transversality equations.

PACS

04.20 Classical general relativity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Einstein A.,Ann. Phys. (Leipzig),17 (1905) 891.ADSCrossRefMATHGoogle Scholar
  2. [2]
    Pauli W.,Theory of Relativity (Pergamon) 1958.Google Scholar
  3. [3]
    Hill E. L.,Phys. Rev.,72 (1947) 143.ADSCrossRefGoogle Scholar
  4. [4]
    Rohrlich F.,Ann. Phys. (N.Y.),22 (1963) 169;Classical Charged Particles (Addison-Wesley) 1965.MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    Rindler W.,Phys. Rev.,119 (1960) 2082.MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    Kichenassamy S.,C. R. Acad. Sci. Paris,260 (1965) 3001.MathSciNetGoogle Scholar
  7. [7]
    Bower J. W.,Contributions to the Calculus of Variations for Years 1983–1937 (University of Chicago).Google Scholar
  8. [8]a)
    Bliss G. A.,Am. J. Math.,52 (1930) 673;MathSciNetCrossRefMATHGoogle Scholar
  9. [8]b)
    Bliss G. A.,Lectures on the Calculus of Variations (University of Chicago Press) 1946.Google Scholar
  10. [9]
    Ewing G. M.,Calculus of Variations with Applications (W. W. Norton) 1969; subsequent reprint by Dover, 1985.Google Scholar
  11. [10]
    Young L. C,Lectures on the Calculus of Variations and Optimal Control Theory (N. B. Saunders) 1969; subsequent reprint by Chelsea, 1980.Google Scholar
  12. [11]
    Caratheodory C.,Calculus of Variations and Partial Differential Equations of the First Order (Chelsea) 1982.Google Scholar
  13. [12]
    Barut A. O.,Electrodynamics and Classical Theory of Fields and Particles (MacMillan) 1964; subsequent reprint by Dover, 1980.Google Scholar

Copyright information

© Società Italiana di Fisica 1996

Authors and Affiliations

  • R. A. Krikorian
    • 1
  1. 1.Collège de FranceInstitut d’AstrophysiqueParisFrance

Personalised recommendations