Il Nuovo Cimento B (1971-1996)

, Volume 111, Issue 8, pp 963–971 | Cite as

Propagator of a time-dependent unbound quadratic Hamiltonian system

  • K. H. Yeon
  • H. J. Kim
  • C. I. Um
  • T. F. George
  • L. N. Pandey


The propagator for a time-dependent unbound quadratic Hamiltonian system is explicitly evaluated using the path integral method. Two time-invariant quantities of the system are found where these invariants determine whether or not the system is bound. Several examples are considered to illustrate that the propagator obtained for the unbound systems is correct.


03.65.Ge Solutions of wave equations: bound states 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Hartley J. G. andRay J. R.,Phys. Rev. D,25 (1982) 382;Khandekar D. C. and S. S.Wawanda,J. Math. Phys.,20 (1979) 1870;Camiz P.,Gerardi A.,Marehioso C.,Presutti E. andScaeciattelli E.,J. Math. Phys.,12 (1971) 2040;Leach P. G. L.,J. Math. Phys.,21 (1980) 300.MathSciNetADSCrossRefMATHGoogle Scholar
  2. [2]
    Yeon K. H. andUm C. I.,J. Korean Phys. Soc.,23 (1990) 82.Google Scholar
  3. [3]
    Yeon K. H., Man’ko O. V., Um C. I., Dodonov V. V. andGeorge T. F.,J. Soviet Laser Res.,12 (1991) 385;Yeon K. H.,Um C. I. andGeorge T. F.,Phys. Rev. A,36 (1987) 5287;Landovitz L. A.,Lavine A. M.,Ozizmis E. andSchreiber W. M.,J. Chem. Phys.,78 (1983) 291, 6133.CrossRefGoogle Scholar
  4. [4]
    Oh H. G., Lee H. R., George T. F. andUm C. I.,Phys. Rev. A,39 (1989) 5515;Um C. I.,Yeon K. H. andKahng W. H.,J. Korean Phys. Soc.,19 (1986) 1,7;J. Phys. A,20 (1987) 611;Dodonov V. V. andMan’ko V. I.,Phys. Rev. A,20 (1979) 550.MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    Lo V. F.,Phys. Rev. A,47 (1993) 115.ADSCrossRefGoogle Scholar
  6. [6]
    Lewis H. R., jr. andRiesenfeld W. B.,J. Math. Phys.,10 (1969) 1458.MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    Yeon K. H., Lee K K., Um C. I., George T. F. andPandey L. N.,Phys. Rev. A,48 (1993) 2716.ADSCrossRefGoogle Scholar
  8. [8]
    Feynman R. P. andHibbs A. R.,Quantum Mechanics and Path Integrals (McGraw-Hill, New York, N.Y.) 1965, Chapt. 3.Google Scholar

Copyright information

© Società Italiana di Fisica 1996

Authors and Affiliations

  • K. H. Yeon
    • 1
  • H. J. Kim
    • 1
  • C. I. Um
    • 2
  • T. F. George
    • 3
  • L. N. Pandey
    • 4
  1. 1.Department of PhysicsChungbuk National UniversityCheongju, ChungbukKorea
  2. 2.Department of PhysicsCollege of Science, Korea UniversitySeoulKorea
  3. 3.Office of the Chancellor, Departments of Chemistry and Physics & AstronomyUniversity of Wisconsin-Stevens PointStevens PointUSA
  4. 4.Departments of Chemistry and PhysicsWashington State UniversityPullmanUSA

Personalised recommendations