Advertisement

Sadhana

, Volume 18, Issue 2, pp 143–148 | Cite as

Introduction

  • B L Deekshatulu
Trends In Computer Vision
  • 77 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adelsomn E H, Wang J Y A 1992 Single lens with a plenoptic camera.IEEE Trans. Pattern Anal. Mach. Intell. 14: 99–106CrossRefGoogle Scholar
  2. Ballard D H, Brown C M 1992 Principles of animate vision.Comput. Vision Graph. Image Process. Image Understanding 56: 3–21MATHGoogle Scholar
  3. Baribeau R, Rioux M, Godin G 1992 Color reflectance modelling using polychromatic laser range sensor.IEEE Trans. Pattern Anal. Mach. Intell. 14: 263–268CrossRefGoogle Scholar
  4. Besl P, Jain R C 1986 Three dimensional object recognition.Comput. Surv. 17: 75–145CrossRefGoogle Scholar
  5. Bobick A F, Bolles R C 1992 The representation space paradigm of concurrent evolving object descriptions.IEEE Trans. Pattern Anal. Mach. Intell. 14: 146–156CrossRefGoogle Scholar
  6. Brooks M J, Chojnacki W, Kozera R 1992 Impossible and ambiguous shading patterns.Int. J. Comput. Vision 7: 119–126CrossRefGoogle Scholar
  7. Campani M, Verri A 1992 Motion analysis from first-order properties of optical flow.Comput. Vision Graph. Image Process. Image Understanding 56: 90–107MATHGoogle Scholar
  8. Chen C-H, Mulgaonkar P G 1992 Automatic vision programming.Comput. Vision Graph. Image Process. Image Understanding 55: 170–183MATHGoogle Scholar
  9. Chin R T, Dyer C R 1986 Model based recognition in robotics.Comput. Surv. 18: 67–107CrossRefGoogle Scholar
  10. Choudhury A, Rauka S 1992 Parallel processing for computer vision and image understanding.IEEE Comput. 25: 7–10Google Scholar
  11. Dickinson S J, Pentland A P, Rosenfeld A 1992 3-D Shape recovery using distributed aspect matching.IEEE Trans. Pattern Anal. Mach. Intell. 14: 175–198CrossRefGoogle Scholar
  12. Dickmanns E D, Mysliwetz B D 1992 Recursive 3-D road and relative ego-state recognition.IEEE Trans. Pattern Anal. Mach. Intell. 14: 199–213CrossRefGoogle Scholar
  13. Eberhart R C, Dobbins R W 1991 Designing neural network explanation facilities using genetic algorithms.Proc. Int. Joint Conf. Neural Networks, pp. 1758–1763Google Scholar
  14. Funt B V, Drew M S, Jian H 1991 Color constancy from mutual reflection.Int. J. Comput. Vision 6: 5–24CrossRefGoogle Scholar
  15. Gennery D B 1992 Visual tracing of known three dimensional objects.Int. J. Comput. Vision 7: 243–270CrossRefGoogle Scholar
  16. Grimson W E L 1992 The cost of choosing the wrong model in object recognition by constrained search.Int. J. Comput. Vision 7: 195–210CrossRefGoogle Scholar
  17. Grimson W E L, Huttenlocher D P 1992 Introduction to the special issue on interpretation of 3-D scenes.IEEE Trans. Pattern Anal. Mach. Intell. 14: 97–98Google Scholar
  18. Heeger D J, Jepson A D 1992 Subspace methods for recovering rigid motion I: Algorithm and implementation.Int. J. Comput. Vision 7: 95–177CrossRefGoogle Scholar
  19. Hung Y-P, Cooper D B, Cernuschi-Frias B 1991 Asymptotic Bayesian surface estimation using an image sequence.Int. J. Comput. Vision 6: 105–132CrossRefGoogle Scholar
  20. Ishiguro H, Yamamoto M, Tsuji S 1992 Omni-directional stereo.IEEE Trans. Pattern Anal. Mach. Intell. 14: 257–262CrossRefGoogle Scholar
  21. Katsuji I, Kazutoshi G, Yoshiki U 1991 Pattern extraction and recognition for noisy images using three layer BP model.Proc. Int. Joint Conf. on Neural Networks, pp. 262–267Google Scholar
  22. Kweon I S, Kanade T 1992 High resolution terrain map from multiple sensor data.IEEE Trans. Pattern Anal. Mach. Intell. 14: 278–292CrossRefGoogle Scholar
  23. Lu Y, Jain R C 1992 Reasoning about edges in scale space.IEEE Trans. Pattern Anal. Mach. Intell. 14: 450–455CrossRefGoogle Scholar
  24. Marsh B, Brown C, Le Blanc T, Scott M, Becker T, Quiroz C, Das P, Karlson J 1992 The Rochester checkers player: Multimodel parallel programming for animatic vision.IEEE Comput. 25: 12–19Google Scholar
  25. Mathew B I, Ping T C 1991 Some experiments on use of genetic algorithms in a Boltzman machine.Proc. Int. Joint Conf. on Neural Networks, pp. 2645–2652Google Scholar
  26. Nelson R C 1991 Introduction: Vision as intelligent behaviour — An introduction to machine vision at the University of Rochester.Int. J. Comput. Vision 7: 5–9CrossRefGoogle Scholar
  27. Nelson R C, Polana R 1992 Qualitative recognition of motion using temporal texture.Comput. Vision Graph. Image Process. Image Understanding 56: 78–79MATHGoogle Scholar
  28. Nie X, Surkan A J 1991 Genetic algorithms: Hints from biological science.Proc. Int. Joint Conf. on Neural Networks, pp 426–429Google Scholar
  29. Olson T J, Coombs D J 1991 Real-time vergence control for binocular robots.Int. J. Comput. Vision 7: 67–89CrossRefGoogle Scholar
  30. Pavlidis T 1992 Why progress in machine vision is so slow.Pattern Recogn. Lett. 13: 221–225CrossRefGoogle Scholar
  31. Rimey R D, Brown C M 1991 Controlling eye movements with hidden Markov models.Int. J. Comput. Vision 7: 47–65CrossRefGoogle Scholar
  32. Saund E 1992 Putting knowledge into a visual shape representation.Artif. Intell. 54: 71–119CrossRefGoogle Scholar
  33. Seibert M, Waxman A M 1992 Adaptive 3-D object recognition from multiple views.IEEE Trans. Pattern Anal. Mach. Intell. 14: 107–124CrossRefGoogle Scholar
  34. Shakunaga T 1992 3-D corridor scene modelling from a single view under natural lighting conditions.IEEE Trans. Pattern Anal. Mach. Intell. 14: 293–297CrossRefGoogle Scholar
  35. Stein F, Medioni G 1992 Structural indexing: Efficient 3-D object recognition.IEEE Trans. Pattern Anal. Mach. Intell. 14: 125–145CrossRefGoogle Scholar
  36. Straforini M, Coelho C, Campani M, Torre V 1992 The recovery and understanding of a line drawing from indoor scenes.IEEE Trans. Pattern Anal. Mach. Intell. 14: 298–302CrossRefGoogle Scholar
  37. Swain M J, Ballard D H 1991 Color indexing.Int. J. Comput. Vision 7: 11–32CrossRefGoogle Scholar
  38. Tistarelli M, Sandini G 1992 Dynamic aspects in active vision.Comput. Vision Graph. Image Process. Image Understanding 56: 108–129MATHGoogle Scholar
  39. Vaillant R, Faugeras O D 1992 Using external boundaries for 3-D object modelling.IEEE Trans. Pattern Anal. Mach. Intell. 14: 157–173CrossRefGoogle Scholar
  40. Walbridge C T 1989 Genetic algorithms: What computers can learn from Darwin.Technol. Rev. 92: 46–53Google Scholar
  41. Weems C C, Riseman E M, Hanson A R 1992 Image understanding architecture: Exploiting potential parallelism in machine vision.IEEE Comput. 25: 65–68Google Scholar
  42. Zhang Z, Faugeras O D 1992 Three dimensional motion computation and object segmentation in a long sequence of stereo frames.Int. J. Comput. Vision 7: 211–241CrossRefGoogle Scholar
  43. Zhao F 1991 Machine recognition as representation and search — A survey.Int. J. Pattern Recogn. Artif. Intell. 5: 715–747CrossRefGoogle Scholar
  44. Zuker S W 1993 Endowing AI with vision: A biological and computational perspective.Curr. Sci. 64: 407–418Google Scholar

Copyright information

© the Indian Academy of Sciences 1993

Authors and Affiliations

  • B L Deekshatulu

There are no affiliations available

Personalised recommendations