Molecular Neurobiology

, Volume 20, Issue 2–3, pp 81–91 | Cite as

Cytoplasmic dynein and microtubule transport in the axon: The action connection

  • K. Kevin Pfister


The neuron uses two families of microtubule-based motors for fast axonal transport, kinesin, and cytoplasmic dynein. Cytoplasmic dynein moves membranous organelles from the distal regions of the axon to the cell body. Because dynein is synthesized in the cell body, it must first be delivered to the axon tip. It has recently been shown that cytoplasmic dynein is moved from the cell body along the axon by two different mechanisms. A small amount is associated with fast anterograde transport, the membranous organelles moved by kinesin. Most of the dynein is transported in slow component b, the actin-based transport compartment. Dynactin, a protein complex that binds dynein, is also transported in slow component b. The dynein in slow component b binds to microtubules in an ATP-dependent manner in vitro, suggesting that this dynein is enzymatically active. The finding that functionally active dynein, and dynactin, are associated with the actin-based transport compartment suggests a mechanism whereby dynein anchored to the actin cytoskeleton via dynactin provides the motive force for microtubule movement in the axon.

Index Entries

Dynein dynactin actin microtubule axonal transport motor protein 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vale, R., Banker, G., and Hall, Z. W. (1992) The neuronal cytoskeleton, inAn Introduction to Molecular Neurobiology (Hall, Z. W., ed.), Sineuer Associates Inc., Sunderland, MA pp. 247–279.Google Scholar
  2. 2.
    Heidemann, S. R., Kanders, J. M., and Hamborg, M. A. (1981) Polarity orientation of axonal microtubules.J. Cell. Biol. 91, 661–665.PubMedCrossRefGoogle Scholar
  3. 3.
    Baas, P. W., Deitch, J. S., Black, M. M., and Banker G. A. (1988) Polarity orientation of microtubules in hippocampal neurons: uniformity in the axon and nonuniformity in the dendrite.Proc. Natl. Acad. Sci. USA 85, 8335–8339.PubMedCrossRefGoogle Scholar
  4. 4.
    Weiss, P. and Hiscoe, H. (1948) Experiments on the mechanism of nerve growth.J. Exp. Zool. 107, 315–395.CrossRefPubMedGoogle Scholar
  5. 5.
    Tytell, M., Black, M. M., Garner, J. A., and Lasek, R. J. (1981) Axonal transport: each major rate component reflects the movement of distinct macromolecular complexes.Science 214, 179–181.PubMedCrossRefGoogle Scholar
  6. 6.
    Grafstein, B. and Forman, D. S. (1980) Intracellular transport in neurons.Physiol. Rev. 60, 1167–1183.PubMedGoogle Scholar
  7. 7.
    Hammerschlag, R. and Brady, S. T. (1989) Axonal Transport and the Neuronal Cytoskeleton, inBasic Neurochemistry (Siegel, G. J., Agranoff, B. W., Albers, R. W., and Molinoff, P. B., eds.), Raven Press, NY, pp. 457.Google Scholar
  8. 8.
    Lasek, R. J., Garner, J. A., and Brady, S. T. (1984) Axonal transport of the cytoplasmic matrix.J. Cell Biol. 99, 212s-221s.PubMedCrossRefGoogle Scholar
  9. 9.
    Hirokawa, N. (1996) Organelle transport along microtubules: the role of KIFs.Trends Cell Biol. 6, 135–141.PubMedCrossRefGoogle Scholar
  10. 10.
    Brady, S. T. (1991) Molecular motors in the nervous system.Neuron 7, 521–533.PubMedCrossRefGoogle Scholar
  11. 11.
    Vallee, R. B. and Bloom, G. S. (1991) Mechanisms of fast and slow axonal transport.Ann. Rev. Neurosci. 14, 59–92.PubMedCrossRefGoogle Scholar
  12. 12.
    Bloom, G. S., and Endow, S. A. (1995) Motor proteins 1: kinesins.Protein Profiles 2, 1109–1111.Google Scholar
  13. 13.
    Hirokawa, N. (1998) Kinesin and dynein super-family proteins and the mechanism of organelle transport.Science 279, 519–526.PubMedCrossRefGoogle Scholar
  14. 14.
    Holzbaur, E. L. and Vallee, R. B. (1994) Dyneins: molecular structure and cellular function.Ann. Rev. Cell Biol. 10, 339–372.PubMedGoogle Scholar
  15. 15.
    Paschal, B. M., Shpetner, H. S., and Vallee, R. B. (1987a) MAP 1C is a microtubule-activated ATPase which translocates microtubules in vitro and has dynein-like properties.J. Cell Biol. 105, 1273–1282.PubMedCrossRefGoogle Scholar
  16. 16.
    King, S. M., Barbarese, E., Dillman, J. F., Patel-King, R. S., Carson, J. H., and Pfister, K. K. (1996) Brain cytoplasmic and flagellar outer arm dyneins share a highly conserved Mr 8,000 light chain.J. Biol. Chem. 271, 19358–19366.PubMedCrossRefGoogle Scholar
  17. 17.
    King, S. M., Patel-King, R. S., Wilkerson, C. G., and Witman, B. (1995) The 78,000-Mr intermediate chain ofChlamydomonas outer arm dynein is a microtubule-binding protein.J. Cell Biol. 131, 399–409.PubMedCrossRefGoogle Scholar
  18. 18.
    Steffen, W., Karki, S., Vaughan, K. T., Vallee, R. B., Holzbaur, E. L. F., Weiss, D. G., and Kuznetsov, S. A. (1998) The involvement of the intermediate chain of cytoplasmic dynein in binding the motor complex to membranous orgaelles of Xenopus oocytes.Mol. Biol. Cell 8, 2077–2088.Google Scholar
  19. 19.
    Steffen, W., Hodgkinson, J. L., and Wiche, G. (1996) Immunogold localization of the intermediate chain within the protein complex of cytoplasmic dynein.J. Struct. Biol. 117, 227–235.PubMedCrossRefGoogle Scholar
  20. 20.
    Niclas, J., Allan, V. J., and Vale, R. D. (1996) Cell-cycle regulation of dynein association with membranes modulates microtubule-based organelle transport.J. Cell Biol. 133, 585–593.PubMedCrossRefGoogle Scholar
  21. 21.
    King, S. M., Barbarese, E., Dillman, J. F., Benashski, S. E., Do, K. T., Patel-King, R. S. and Pfister, K. K. (1998) Cytoplasmic dynein contains a family of differentially expressed light chains.Biochemistry 37, 15033–15041.PubMedCrossRefGoogle Scholar
  22. 22.
    Gill, S. R., Cleveland, D. W., and Schroer, T. A. (1994) Characterization of DLC-A and DLC-B, two families of cytoplasmic dynein light chain subunits.Mol. Biol. Cell 5, 645–654.PubMedGoogle Scholar
  23. 23.
    Dick, T., Ray, K., Salz, H. K., and Chia, W. (1996) Cytoplasmic dynein (ddlc1) mutations cause morphogenetic defects and apoptotic cell death in Drosophila melanogaster.Mol. Cell Biol. 16, 1966–1977.PubMedGoogle Scholar
  24. 24.
    Phillis, R., Statton, D., Caruccio P., and Murphey, R. K. (1996) Mutations in the 8 kDa dynein light chain gene disrput sensory axon projections in the Drosophila imaginal disk CNS.Development 122, 2955–2963.PubMedGoogle Scholar
  25. 25.
    Reddy, S., Jin, P., Trimarchi, J., Caruccio, P., Phillis, R., and Murphey, R. K. (1997) Mutant molecular motors disrupt neural circuits in Drosophila.J. Neurobiol. 33, 711–723.PubMedCrossRefGoogle Scholar
  26. 26.
    Hirokawa, N., Sato-Yoshitake, R., Yoshida, T., and Kawashima, T. (1990) Brain dynein (MAP1C) localizes on both anterogradely and retrogradely transported membranous organelles in vivo.J. Cell Biol. 111, 1027–1037.PubMedCrossRefGoogle Scholar
  27. 27.
    Dahlstrom, A. B. and Booj, S. (1988) Rapid axonal transport as a chromatographic process: the use of immunocytochemistry of ligated nerves to investigate the biochemistry of anterogradely versus retrogradely transported organelles.Cell Motil. Cytoskel. 10, 309–320.CrossRefGoogle Scholar
  28. 27a.
    Brady, S. T. and Lasek, R. J. (1982) Axonal transport: a cell-biological method for studying proteins that associate with the cytoskeleton.Method Cell Biol. 25 Pt B, 365–398.CrossRefGoogle Scholar
  29. 28.
    Brimijoin, S. (1975) Stop-flow: a new technique for measuring axonal transport, and its application to the transport of dopamine-betahydroxylase.J. Neurobiol. 6, 379–394.PubMedCrossRefGoogle Scholar
  30. 28a.
    Dillman, J. F., Dabney, L. P., and Pfister, K. K. (1996) Cytoplasmic dynein is associated with slow axonal transport.Proc. Natl. Acad. Sci. USA 93, 141–144.PubMedCrossRefGoogle Scholar
  31. 29.
    Dillman, J. F., Dabney, L. P., Karki, S., Paschal, B. M., Holzbaur, E. L. F., and Pfister, K. K. (1996) Functional analysis of dynactin and cytoplasmic dynein in slow axonal transport.J. Neurosci. 16, 6742–6752.PubMedGoogle Scholar
  32. 30.
    Allan, V. (1994) Organelle movement. Dynactin: portrait of a dynein regulator.Cur. Biol. 4, 1000–1002.CrossRefGoogle Scholar
  33. 31.
    Schafer, D. A., Gill, S. R., Cooper, J. A., Heuser, J. E., and Schroer, T. A. (1994) Ultrastructural analysis of the dynactin complex: an actin-related protein is a component of a filament that resembles F-actin.J. Cell Biol. 126, 403–412.PubMedCrossRefGoogle Scholar
  34. 32.
    Holleran, E. A., Karki, S., and Holzbaur, E. L. (1998) The role of the dynactin complex in intracellular motility.Int. Rev. Cytol. 182, 69–109.PubMedGoogle Scholar
  35. 33.
    Holleran, E. A., Tokito, M. K., Karki, S., and Holzbaur, E. L. (1996) Centractin (ARP1) associates with spectrin revealing a potential mechanism to link dynactin to intracellular organelles.J. Cell Biol. 135, 1815–1829.PubMedCrossRefGoogle Scholar
  36. 34.
    Mullins, R. D., Kelleher, J. F., and Pollard, T. D. (1996) Actin' like actin.Trends Cell Biol. 6, 208–212.PubMedCrossRefGoogle Scholar
  37. 35.
    Schafer, D. A. and Cooper, J. A. (1995) Control of actin assembly at filament ends.Ann. Rev. Cell Dev. Biol. 11, 497–518.CrossRefGoogle Scholar
  38. 36.
    Holzbaur, E. L., Hammarback, J. A., Paschal, B. M., Kravit, N. G., Pfister, K. K., and Vallee, R. B. (1992) Homology of a 150K cytoplasmic dynein-associated polypeptide with theDrosophila gene Glued.Nature 360, 695–695.PubMedCrossRefGoogle Scholar
  39. 37.
    Echeverri, C. J., Paschal, B. M., Vaughan, K. T., and Vallee, R. B. (1996) Molecular characterization of the 50-kD subunit of dynactin reveals function for the complex in chromosome alignment and spindle organization during mitosis.J. Cell Biol. 132, 617–633.PubMedCrossRefGoogle Scholar
  40. 38.
    Karki, S., LaMonte, B., and Holzbaur, E. L. (1998) Characterization of the p22 subunit of dynactin reveals the localization of cytoplasmic dynein and dynactin to the midbody of dividing cells.J. Cell Biol. 142, 1023–1034.PubMedCrossRefGoogle Scholar
  41. 39.
    Pfister, K. K., Benashski, S. E., Dillman, J. F., Patel-King, R. S., and King, S. M. (1998) Identification and molecular characterization of the p24 dynactin light chain.Cell Motil. Cytoskel 41, 154–167.CrossRefGoogle Scholar
  42. 40.
    Gill, S. R., Schroer, T. A., Szilak, I., Steuer, E. R., Sheetz, M. P., and Cleveland, D. W. (1991) Dynactin, a conserved, ubiquitously expressed component of an activator of vesicle motility mediated by cytoplasmic dynein.J. Cell Biol. 115, 1639–1650.PubMedCrossRefGoogle Scholar
  43. 41.
    Vallee, R. B. and Sheetz, M. P. (1996) Targeting of Motor Proteins.Science 271, 1539–1544.PubMedCrossRefGoogle Scholar
  44. 42.
    Vaughan, K. T. and Vallee, R. B. (1995) Cytoplasmic dynein binds dynactin through a direct interaction between the intermediate chains and p150Glued.J. Cell Biol. 131, 1507–1516.PubMedCrossRefGoogle Scholar
  45. 43.
    Karki, S. and Holzbaur, E. L. F. (1995) Affinity chromatography demonstrates a direct binding between cytoplasmic dynein and the dynactin complex.J. Biol. Chem. 270, 28806–28811.PubMedCrossRefGoogle Scholar
  46. 44.
    Tokito, M. K., Howland D. S., Lee, V. M., and Holzbaur, E. L. F. (1996) Functionally distinct isoforms of dynactin are expressed in human neurons.Mol. Biol. Cell 7, 1167–1180.PubMedGoogle Scholar
  47. 45.
    Plamann, M., Minke, P. F., Tinsley, J. H., and Bruno, K. S. (1994) Cytoplasmic dynein and actin-related protein Arp1 are required for normal nuclear distribution in filamentous fungi.J. Cell Biol. 127, 139–149.PubMedCrossRefGoogle Scholar
  48. 46.
    McGrail, M., Gepner, J., Silvanovich, A., Ludman, S., Serr, M., and Hays, T. S. (1995) Regulation of cytoplasmic dynein function in vivo by theDrosophila Glued complex.J. Cell Biol. 131, 411–425.PubMedCrossRefGoogle Scholar
  49. 47.
    Muhua, L., Karpova, T. S., and Cooper, J. A. (1994) A yeast actin-related protein homologous to that in vertebrate dynactin complex is important for spindle orientation and nuclear migration.Cell 78, 669–679.PubMedCrossRefGoogle Scholar
  50. 48.
    Bruno, K. S., Tinsley, J. H., Minke, P. F., and Plamann, M. (1996) Genetic interactions among cytoplasmic dynein, dynactin, and nuclear distribution mutants of Neurospora crassa.Proc. Natl. Acad. Sci. USA 93, 4775–4780.PubMedCrossRefGoogle Scholar
  51. 49.
    Burkhardt, J. K., Echeverri, C. J., Nilsson, T., and Vallee, R. B. (1997) Overexpression of the dynamitin (p50) subunit of the dynactin complex disrupts dynein-dependent maintenence of membrane organelle distribution.J. Cell Biol. 139, 469–484.PubMedCrossRefGoogle Scholar
  52. 50.
    Presley, J. F., Cole, N. B., Schroer, T. A., Hirschberg, K., Zaal, K. J., and Lippincott-Schwartz, J. (1997) ER-Golgi transport visualized in living cells.Nature 389, 81–85.PubMedCrossRefGoogle Scholar
  53. 51.
    Ahmad, F. J., Echeverri, C. J., Vallee, R. B., and Baas P. W. (1998) Cytoplasmic dynein and dynactin are required for the transport of microtubules into the axon.J. Cell Biol. 140, 391–401.PubMedCrossRefGoogle Scholar
  54. 52.
    Holleran, E. A. and Holzbaur, E. L. (1998) Speculating about spectrin: new insights into the Golgi-associated cytoskeleton.Trends Cell Biol. 8, 26–29.PubMedCrossRefGoogle Scholar
  55. 53.
    Fath, K. R., Trimbur, G. M., and Burgess, D. R. (1997) Molecular motors and a spectrin matrix associate with Golgi membranes in vitro.J. Cell Biol. 139, 1169–1181.PubMedCrossRefGoogle Scholar
  56. 54.
    Lippincott-Schwartz, J. (1998) Cytoskeletal proteins and Golgi dynamics.Curr. Opin. Cell Biol. 10, 52–59.PubMedCrossRefGoogle Scholar
  57. 55.
    Beck, K. A. and Nelson, W. J. (1998) A spectrin membrane skeleton of the Golgi complex.Biochim. Biophys. Acta 1404, 153–160.PubMedCrossRefGoogle Scholar
  58. 56.
    Levine, J. and Willard, M. (1981) Fodrin: axonally transported polypeptides associated with the internal periphery of many cells.J. Cell Biol. 90, 631–643.PubMedCrossRefGoogle Scholar
  59. 57.
    Garner, J. A. and Lasek, R. J. (1982) Cohesive axonal transport of the slow component b complex of polypeptides.J. Neurosci. 2, 1824–1835.PubMedGoogle Scholar
  60. 58.
    Xiang, X., Roghi C., and Morris, N. R. (1995) Characterization and localization of the cytoplasmic dynein heavy chain inAspergillus nidulans.Proc. Natl. Acad. Sci. U.S.A. 92, 9890–9894.PubMedCrossRefGoogle Scholar
  61. 59.
    Busson, S., Dujardin, D., Moreau, A., Dompierre, J., and De, M. J. (1998) Dynein and dynactin are localized to astral microtubules and at cortical sites in mitotic epithelial cells.Curr. Biol. 8, 541–544.PubMedCrossRefGoogle Scholar
  62. 60.
    Carminati, J. L. and Stearns, T. (1997) Microtubules orient the mitotic spindle in yeast through dynein dependent interactions with the cell cortex.J. Cell Biol. 138, 629–641.PubMedCrossRefGoogle Scholar
  63. 61.
    Skop, A. R. and White, J. G. (1998) The dynactin complex is required for cleavage plane specification in earlyCaenorhabditis elegans embryos.Curr. Biol. 8, 1110–1116.PubMedCrossRefGoogle Scholar
  64. 62.
    Kahana, J. A., Schlenstedt, G., Evanchuk, D. M., Geiser, J. R., Hoyt, M. A., and Silver, P. A. (1998) The yeast dynactin complex is involved in partitioning the mitotic spindle between mother and daughter cells during anaphase B.Mol. Biol. Cell 9, 1741–1756.PubMedGoogle Scholar
  65. 63.
    Pfister, K. K., Salata, M. W., Dillman, J. F., Vaughan, K. T., Vallee, R. B., Torre E., and Lye, R. J. (1996) Differential expression and phosphorylation of IC74 subunits of cytoplasmic dynein in cultured neurons and glia.J. Biol. Chem. 271, 1687–1694.PubMedCrossRefGoogle Scholar
  66. 64.
    Pfister, K. K., Salata, M. W., Dillman, J. F., Torre, E., and Lye, R. J. (1996) Identification and developmental regulation of a neuron specific subunit of cytoplasmic dynein.Mol. Cell Biol. 7, 331–343.Google Scholar
  67. 64a.
    Salata, M. W., Dillman, J. F., III, Lye, R. J., and Pfister, K. K. (2000) Changes in the expression of cyloptasmic dynein intermediate chain isoforms precede neurite extension. Submitted.Google Scholar
  68. 65.
    Black, M. M. (1994) Microtubule transport and assembly cooperate to generate the microtubule array of growing axons.Prog. Brain. Res. 102, 61–77.PubMedGoogle Scholar
  69. 66.
    Baas, P. W. (1997) Microtubules and axonal growth.Curr. Opin. Cell Biol. 9, 29–36.PubMedCrossRefGoogle Scholar
  70. 67.
    Baas, P. W. and Brown A. (1997) Slow axonal transport: the polymer transport model.Trends Cell Biol. 7, 380–384.PubMedCrossRefGoogle Scholar
  71. 68.
    Hirokawa, N., Terada, S., Funakoshi, T., and Takeda, S. (1997) Slow axonal transport: the subunit transport model.Trends Cell Biol. 7, 384–388.PubMedCrossRefGoogle Scholar
  72. 69.
    Campenot, B., Lund, K., and Senger, D. L. (1996) Delivery of newly synthesized tubulin to rapidly growing distal axons of sympathetic neurons in compartmented cultures.J. Cell Biol. 135, 701–709.PubMedCrossRefGoogle Scholar
  73. 70.
    Nixon, R. A. (1998) The slow axonal transport debate.Trends Cell Biol. 8, 100PubMedCrossRefGoogle Scholar
  74. 71.
    Keating, T. J., Peloquin, J. G., Rodionov, V. I., Momcilovic, D., and Borisy, G. G. (1997) Microtubule release from the centrosome.Proc. Natl. Acad. Sci. USA 94, 5078–5083.PubMedCrossRefGoogle Scholar
  75. 72.
    Gibbons, I. R. (1981) Cilia and flagella of eukaryotes.J. Cell Biol. 91, 107s-124s.PubMedCrossRefGoogle Scholar
  76. 73.
    Witman, G. B. (1992) Axonemal dyneins.Curr. Opin. Cell Biol. 4, 74–79.PubMedCrossRefGoogle Scholar
  77. 74.
    King, S. M., Wilkerson, C. G., and Witman, G. B. (1991) The Mr 78,000 intermediate chain of Chlamydomonas outer arm dynein interacts with alpha-tubulin in situ.J. Biol. Chem. 266, 8401–8407.PubMedGoogle Scholar
  78. 75.
    Gibbons, I. R. (1988) Dynein ATPases as microtubule motors.J. Biol. Chem. 263, 15837–15840.PubMedGoogle Scholar
  79. 76.
    Porter, M. E. (1996) Axonemal dyneins: assembly, organization, and regulation.Cur. Opin. Cell Biol. 8, 10–17.CrossRefGoogle Scholar
  80. 77.
    McQuarrie, I. G., Brady, S. T., and Lasek, R. J. (1986) Diversity in the axonal transport of structural proteins: major differences between optic and spinal axons in the rat.J. Neurosci. 6, 1593–1605.PubMedGoogle Scholar
  81. 78.
    Hoffman, P. N. and Lasek, R. J. (1975a) The slow component of axonal transport. Identification of major structural polypeptides of the axon and their generality among mammalian neurons.J. Cell Biol. 66, 351–366.PubMedCrossRefGoogle Scholar
  82. 79.
    Black, M. M., and Lasek, R. J. (1978) A difference between the proteins conveyed in the fast component of axonal transport in guinea pig hypoglossal and vagus motor neurons.J. Neurobiol. 9, 433–443.PubMedCrossRefGoogle Scholar
  83. 80.
    Hoffman, P. N. and Lasek, R. J. (1980b) Axonal transport of the cytoskeleton in regenerating motor neurons: constancy and change.Brain Res. 202, 317–333.PubMedCrossRefGoogle Scholar
  84. 81.
    McQuarrie, I. G., Brady, S. T., and Lasek, R. J. (1989) Retardation in the slow axonal transport of cytoskeletal elements during maturation and aging.Neurobiol. Aging 10, 359–365.PubMedCrossRefGoogle Scholar
  85. 82.
    Hoffman, P. N., Lasek, R. J., Griffin, J. W., and Price, D. L. (1983) Slowing of the axonal transport of neurofilament proteins during development.J. Neurosci. 3, 1694–1700.PubMedGoogle Scholar
  86. 83.
    Cleveland, D. W. and Hoffman, P. N. (1991) Slow axonal transport models come full circle: evidence that microtubule sliding mediates axon elongation and tubulin transport.Cell 67, 453–456.PubMedCrossRefGoogle Scholar
  87. 84.
    Nixon, R. A. and Logvinenko, K. B. (1986) Multiple fates of newly synthesized neurofilament proteins: evidence for a stationary neurofilament network distributed nonuniformly along axons of retinal ganglion cell neurons.J. Cell Biol. 102, 647–659.PubMedCrossRefGoogle Scholar
  88. 85.
    Paschal, B. M. and Vallee R. B. (1987) Retrograde transport by the microtubule-associated protein MAP 1C.Nature 330, 181–183.PubMedCrossRefGoogle Scholar
  89. 86.
    Paschal, B. M., King, S. M., Moss, A. G., Collins, C. A., Vallee, R. B., and Witman, G. B. (1987b) Isolated flagellar outer arm dynein translocates brain microtubules in vitro.Nature 330, 672–674.PubMedCrossRefGoogle Scholar
  90. 87.
    Mitchison, T. and Kirschner, M. (1984) Dynamic instability of microtubule growth.Nature 312, 237–242.PubMedCrossRefGoogle Scholar
  91. 88.
    Stewart, R. J., Semerijan, J., and Schmidt, C. F. (1998) Highly processive motility is not a general feature of the kinesins.Eur. Biophys. J. 27, 353–360.PubMedCrossRefGoogle Scholar
  92. 89.
    Muresan, V., Godek, C. P., Reese, T. S., and Schnapp, B. J. (1996) Plus-end motors override minus-end motors during transport of squid axon vesicles on microtubules.J. Cell Biol 135, 383–397.PubMedCrossRefGoogle Scholar
  93. 90.
    Ainger, K., Avossa, D., Morgan, F., Hill, S. J., Barry, C., Barbarese, E., and Carson, J. H. (1993) Transport and localization of exogenous myelin basic protein mRNA microinjected into oligodendrocytes.J. Cell Biol. 123, 431–441.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 2000

Authors and Affiliations

  • K. Kevin Pfister
    • 1
  1. 1.Cell Biology Department, School of MedicineUniversity of VirginiaCharlottesville

Personalised recommendations