Advertisement

Potato Research

, Volume 48, Issue 3–4, pp 153–165 | Cite as

Somaclonal variation in tuber traits of potato

  • Ramona Thieme
  • Helmut Griess
Full Papers

Summary

About 13,000 somaclones of 17 cultivars and clones of potato were obtained from in vitro callus cultures and individually planted in a greenhouse, followed by tuber generations grown in the field. These plants were subjected to the multistage selection procedure commonly used in potato breeding. Over a period of five years and three field generations the tuber number, size, shape, eye depth, starch content, starch yield and tuber appearance of these somaclones were assessed and compared with that of the controls. These characters varied depending on donor genotype and trait. The frequency of variants was assessed and there were acceptable proportions of desirable abberrants and invariants among the somaclones. Depending on trait the average gain rate for all donor genotypes ranged between 0.2 and 2.3% for-deviants, between 12.2 and 15.5% for invariants and between 0.1–1.4% for +deviants.

It is concluded that this technique should be used into potato breeding programmes to improve commercially important characteristics of specific cultivars and breeding clones.

Additional keywords

Solanum tuberosum L. callus culture tuber yield tuber size starch content starch yield tuber shape eye depth 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cassells, A.C., S. Austin & E.M. Goetz, 1987. Variation in tubers in single cell-derived clones of potato in Ireland. In: Y.P.S. Bajaj (Ed.), Biotechnology in Agriculture and Forestry 3, Potato, Springer Verlag, Berlin, pp. 375–391.Google Scholar
  2. Cassells, A.C., M.L. Deadman, C.A. Brown & E. Griffin, 1991. Field resistance to late blight (Phytophtkora infestans (Mont.) de Bary) in potato (Solarium tuberosum L.) somaclones associated with instability and pleiotropic effects.Euphytica 56: 75–80.Google Scholar
  3. Cassells, A.C., B. Kowalski, D.M. Fitzgerald & G.A. Murphy, 1999. The use of image analysis to study developmental variation in micropropagated potato (Solanum tuberosum L.) plants.Potato Research 42: 541–548.CrossRefGoogle Scholar
  4. Chauvin, J.E., C. Souchet, J.P. Dantec & D. Ellissèche, 2003. Chromosome doubling of 2xSolarium species by oryzalin: method development and comparison with spontaneous chromosome doubling in vitro.Plant Cell, Tissue and Organ Culture 73: 65–73.CrossRefGoogle Scholar
  5. Chromova, L.M., 1984. Vozmoznosti somakonal’ noj variabel’nosti genotipov kartofelja dlja ulucenija sortov. Use of somaclonal variation of potato genotypes for the improvement of cultivars. In: Ispol’zovanie kletocnych technologii v selekcii kartofelja, Moskva, pp. 68–74.Google Scholar
  6. Curry, R.F. & A.C. Cassels, 1999. Callus initiation, maintenance and shoot induction in potato: monitoring of spontaneous genetic variability in vitro and in vivo. In: R.D. Hall (Ed.), Methods in Molecular Biology: Plant Cell Culture Protocols. Humana Press, New York, pp. 31–42.CrossRefGoogle Scholar
  7. Eberlein, C.V., M.J. Guttieri & J. Steffen-Campbell, 1998. Bromoxynil resistance in transgenic potato clones expressing the bxn gene.Weed Science 46: 150–157.Google Scholar
  8. Evans, N.E., D. Foulger, L. Farrer & S.W.J. Bright, 1986. Somaclonal variation in explantderived potato clones over three tuber generations.Euphytica 35: 353–361.CrossRefGoogle Scholar
  9. Griess, H. & R. Thieme, 1992. Einschätzung von Somaklonen der Kartoffel nach mehrjährigem Feldanbau.Vorträge Pflanzenzüchtung 21: 165–166.Google Scholar
  10. Heeres, P., M. Schippers-Rozenboom, E. Jacobsen & R.G.F. Visser, 2002. Transformation of a large number of potato varieties: genotype-dependent variation in efficiency and somaclonal variability.Euphytica 124:13–22.CrossRefGoogle Scholar
  11. Jelenik, S., J. Berljak, D. Papes & S. Jelaska, 2001. Mixoploidy and chimeric structures in somaclones of potato (Solanum tuberosum L.) cv. Bintje.Food Technology and Biotechnology 39: 13–17.Google Scholar
  12. Jurjeva, N.O., 1987. Izucenie razlicij v variacionnych potencijach genotipov sortov kartofelja. Study of the potential of variation in potato cultivars. In: Ispol’zovanie kletocnych technologii v selekcii kartofelja, Moskva, pp. 6–10.Google Scholar
  13. Kostrica, P., Z. Opatrny, E. Fricova & S. Hausvaterova, 1988. Somaclonal variation of callusderived potato regenerants.Genetica a siecht. Praha 24: 245–256.Google Scholar
  14. Kowalski, B. & A.C. Cassells, 1999. Mutation breeding for yield andPhytophthora infestans (Mont.) de Bary foliar resistance in potato (Solanum tuberosum L. cv. Golden Wonder) using computerized image analysis in selection.Potato Research 42: 121–130.CrossRefGoogle Scholar
  15. Kumar, A., 1994. Somaclonal variation. In: J.E. Bradshaw & G.R. Mackay (Ed.), Potato Genetics. CAB International, Wallingford, UK, pp. 197–213.Google Scholar
  16. Maki-Valkama, T., J.P.T. Valkonen, A. Lehtinen & E. Pehu, 2001. Protection against potato virus Y (PVY) in the field in potatoes transformed with the PVYP1 gene.American Journal of Potato Research 78: 209–214.CrossRefGoogle Scholar
  17. Meulemans, M., G. Fouarge & C. Anceau, 1987. Selection d’un variant Bintje plus productif. In: Abstracts of Conference Papers and Posters, 10th Triennial Conference of the European Association for Potato Research, Aalborg, Denmark, p. 424.Google Scholar
  18. Mirenkova, N.N., 1978. Izucenie rastenijregenerantov, polucennych v resul’tate spontannogo i induzirovannogo morfogeneza kallusnoj tkani kartoffelja. Study of plant regenerants after spontaneous and induced morphogenesis of potato callus.Sel. i semenov. kartofelja. Nauc. issl. Inst. kartofeln. choz., Nauc. tr. 23: 84–87.Google Scholar
  19. Murashige, T. & F. Skoog, 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures.Physiologia Plantarum 15: 473–497.CrossRefGoogle Scholar
  20. Ochatt, S.J., P.L. Marconi, S. Radice, P.A. Arnozis & O.H. Caso, 1998. In vitro recurrent selection of potato: production and characterization of salt tolerant cell lines and plants.Plant Cell, Tissue and Organ Culture 55: 1–8.CrossRefGoogle Scholar
  21. Pavek, J.J. & D.L. Corsini, 1982. Field performance of clones from regenerated protoplasts of Russet Burbank.American Potato Journal 59: 482.Google Scholar
  22. Polgar, Z., S.M. Wielgus, S. Horvath & J.P. Helgeson, 1999. DNA analysis of potato (+)Solarium brevidens somatic hybrid lines.Euphytica 105: 103–107.CrossRefGoogle Scholar
  23. Rietveld, R.C., P.M. Hasegawa & R.A. Bressan, 1991. Somaclonal variation in tuber disc-derived populations of potato.Theoretical and Applied Genetics 82: 430–440.CrossRefGoogle Scholar
  24. Rietveld, R.C., R.A. Bressan & P.M. Hasegawa, 1993. Somaclonal variation in tuber disc-derived populations of potato. II. Differential effect of genotype.Theoretical and Applied Genetics 87: 305–313.CrossRefGoogle Scholar
  25. Secor, G.A. & J.F. Shepard, 1981. Variability of protoplast-derived potato clones.Crop Science 21: 102–105.CrossRefGoogle Scholar
  26. Sidorov, V.A., A.A. Kucko, P.P. Gajduk & J.J. Gleba, 1985. Somaklonalnye variacii sredi rastenij, polucennych iz protoklonov kartofelja. Somaclonal variation of plants from protoclonesof potato.Doklady Akademii Nauk SSSR 281: 704–707.Google Scholar
  27. Taylor, R.J., G.A. Secor, C.L. Ruby & P.H. Orr, 1993. Tuber yield, soft rot resistance, bruising resistance and processing quality in a population (cv. Crystal) somaclones.American Potato Journal 70: 117–130.Google Scholar
  28. Thieme, R. & H. Griess, 1996. Somaklonale Variation des Krautes, der Vegetationslänge und des Ertrages bei Kartoffeln.Potato Research 39: 355–365.CrossRefGoogle Scholar
  29. Thomson, A.J., R.E. Gunn, G.J. Jellis, R.E. Boulton & C.N.D. Lacey, 1986. The evaluation of potato somaclones. In: J. Semai (Ed.), Somaclonal Variations and Crop Improvement, Marinus Nijhoff Publishers, Boston, pp. 236–243.Google Scholar
  30. Thomson, A.J., C.N.D. Lacey, R.M. Negus, A.M. Squire, L. Taylor & R.J. Jellings, 1987a. Evaluation of somaclonal variation in the field. In: Annual Report Plant Breeding Institute Cambridge 1986, p. 49.Google Scholar
  31. Thomson, A.J., A.P. MacQueen & N.C. Starling, 1987b. Recent results from field trials of potato somaclones. Abstracts of Conference Papers and Posters 10th Triennial Conference of the European Association for Potato Research, Aalborg, Denmark, p. 423.Google Scholar
  32. Tiemann, H., 1986. Untersuchungen der somaklonalen Variabilität. In: Schaffung von Ausgangsmaterial über In-vitro-Kultur als Basis für neuartige Züchtungsverfahren, Forschungsbericht, Institut für Kartoffelforschung Groß Lüsewitz, 15 S.Google Scholar
  33. Webb, K.J., E.O. Osifo & G.G. Henshaw, 1983. Shoot regeneration from leaflet discs of six cultivars of potato (Solanum tuberosum subsp.tuberosum).Plant Science Letters 30: 1–8.CrossRefGoogle Scholar
  34. Wheeler, V.A., N.E. Evans & D. Foulger, 1985. Shoot formation from expiant cultures of 14 potato cultivars and studies of the cytology of regenerated plants.Annals of Botany 55: 309–320.Google Scholar
  35. Zvomuya, F. & C.J. Rosen, 2002. Biomass partitioning and nitrogen use efficiency of ‘superior’ potato following genetic transformation for resistance to Colorado potato beetle.Journal of the American Society for Horticultural Science 127: 703–709.Google Scholar

Copyright information

© Kluwer Academic Publishers 2005

Authors and Affiliations

  • Ramona Thieme
    • 1
  • Helmut Griess
    • 2
  1. 1.Federal Centre for Breeding Research on Cultivated PlantsInstitute of Agricultural CropsGroß LüsewitzGermany
  2. 2.Groß LüsewitzGermany

Personalised recommendations