Ascorbat- und Glutathiongehalt in verschiedenartig schadstoffbeeinflußten Nadeln vonPinus sylvestris L.

  • Sigrid Härtling
  • H. Schulz
Article

Zusammenfassung

In Extrakten von Nadelmischproben (Pinus sylvestris L.) wurde der Gesamtgehalt von Ascorbat und Glutathion mittels HPLC-Methoden bestimmt. Dabei konnte die chromatographische Abtrennung von Glutathion durch Optimierung des Gradientenprofils verbessert werden.

Die Untersuchungen erfolgten an Nadelproben aus Kiefernjung- und-altbeständen mit differenzierter SO2-Immission. Mit zunehmender Immissionsbelastung zeigten diesjährige Nadeln von Jungbeständen einen Anstieg im Gesamtascorbatgehalt. Der gleiche Effekt wurde für den Gesamtglutathiongehalt sowohl in Jung- als auch in Altbeständen beobachtet. Diese Befunde wurden mit Literaturangaben anderer Untersuchungssysteme (Versuche in Expositions- und Open-Top-Kammern) diskutiert.

Ascorbate and glutathione contents in diversely pollutant affected needles ofPinus sylvestris L.

Summary

Concentrations of antioxidants ascorbate and glutathione in Scots pine needles (Pinus sylvestris L.) taken from trees in the field were determined using the HPLC technique. A modification of the gradient profile made it possible to achieve a better separation between glutathione and the derivatization reagent monobromobimane in the chromatogram.

The needles were taken from pine trees 25 years and 60 years old, growing in areas with varying pollution. This year's needles of young pine trees were characterized by an increase in the total ascorbate content related to rising amounts of atmospheric pollutants. A similar trend was observed for glutathione in both young and old trees. These results are discussed in comparison with literature data on related open-top chamber experiments.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Alscher, R. G., 1989: Biosynthesis and antioxidant function of glutathion in plants Physiol. Plant.77, 457–464.CrossRefGoogle Scholar
  2. Alscher, R. G.;Amthor, J. S., 1988: The physiologie of free-radical scavening: maintenance and repair processes. In: Air Pollution and Plant Metabolism (ed.P. Schulte-Hostede, N. M. Darrall, L. W. Blank undR. A. Wellburn. New York: Elsevier pp. 94–115.Google Scholar
  3. Asada, K., 1980: Formation and scavenging of superoxide in chloroplasts, with relation to injury by sulphur dioxide. Studies on the effects of air pollutants on plants and mechanisms of phytotoxicity. National Institute Environment Studies. Research Report No.11, 165–179.Google Scholar
  4. Baeyens, W. R. G.;van der Weken, G.;de Moerloose, P., 1988: Reversed-Phase High-Performance Liquid Chromatography of Thiol-Bimane Derivatives. Anal. Chim. Acta,205, 43–51.CrossRefGoogle Scholar
  5. Barnes, R. L., 1972: Effects of chronic exposure to ozone on soluble sugar and ascorbic acid contents of pine seedlings. Canadien Journal of Botany50, 215–219.CrossRefGoogle Scholar
  6. Bender, J.;Weigel, H.-J.;Jäger, H.-J., 1991: Untersuchungen in Open-Top-Kammern zur Kombinationswirkung von Schadgasen (O3, NO2, SO2) auf Pflanzen. Verhandlungen der Gesellschaft für Ökologie (Osnabrück 1989), Band XIX/III: 321–329.Google Scholar
  7. Bender, J.;Weigel, H.-J.;Wegner, U.;Jäger, H.-J., 1994: Response of cellular antioxidants to ozone in wheat flag leaves at different stages of plant development. Environmental Pollution84, 15–21.CrossRefGoogle Scholar
  8. Capellmann, M.;Bolt, H. M., 1992: Simultanous determination of ascorbic acid and dehydroascorbic acid by HPLC with postcolumn derivatisation and fluorometric detection. Fresenius J. Anal. Chem.342, 462–466.CrossRefGoogle Scholar
  9. Castillo, F. J.;Miller, R. P.;Greppin, H., 1987: Extracellular biochemical markers of photochemical oxidant air pollution damage to Norway spruce. Experientia43, 111–115.CrossRefGoogle Scholar
  10. Doulis, A. G.;Hausladen, A. G.;Mondy, B.;Alscher, R. G.;Chevone, B. I.;Hess, J. L.;Weiser, R. L., 1993: Antioxidant Response and Winter Hardiness in Red Spruce (Picea rubens Sarg.) New Phytol.123, 365–374.CrossRefGoogle Scholar
  11. Elstner, E. F., 1987: Metabolism of activated oxygen species. In: Stumpf PK, Conn EE, eds. Biochemistry of plants—a comprehensive treatise, Vol 11, Biochemistry of metabolism. New York: Academic Press, pp. 253–315.Google Scholar
  12. Esterbauer, H.;Grill, D., 1978: Seasonal Variation of Glutathione and Glutathione Reductase in Needles ofPicea abies. Plant Physiol.61, 119–121.CrossRefGoogle Scholar
  13. Esterbauer, H.;Grill, D.;Welt, R., 1980: Der jahreszeitliche Rhythmus des Ascorbinsäuresystems in Nadeln vonPicea abies. Z. Pflanzenphysiol.98 393–402.CrossRefGoogle Scholar
  14. Fahey, R. C.;Newton, G. L.;Dorian, R.;Kosower, E. M., 1981: Analysis of Biological Thiols: Quantitative Determination of Thiols at the Picomole Level Based upon Derivatization with Monobrombimanes and Separation by Cation-Exchange Chromatography. Anal. Biochem.111, 357–365.CrossRefGoogle Scholar
  15. Foyer, C. H.;Halliwell, B., 1976: The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta133, 21–25.CrossRefGoogle Scholar
  16. Grill, D.;Esterbauer, H., 1973: Quantitative Bestimmung wasserlöslicher Sulfhydrylverbindungen in gesunden und SO2-geschädigten Nadeln vonPicea abies. Phyton15, 87–101.Google Scholar
  17. Groden, D.;Beck, E., 1979: H2O2 destruction by ascorbate dependent systems of chloroplasts. Biochim. Biophys. Acta546, 426–435.CrossRefGoogle Scholar
  18. Hausladen, A.;Madamanchi, N. R.;Fellows, S.;Alscher, R. G.;Amundson, R. G., 1990: Seasonal changes in antioxidants in red spruce as affected by ozone. New Phytol.115, 447–458.CrossRefGoogle Scholar
  19. Iwase, H., 1992: Determination of ascorbic acid in elemental diet by high-performance liquid chromatography with electrochemical detection. J Chrom.606, 277–280.CrossRefGoogle Scholar
  20. Manderscheid, R.;Jäger, H.-J., 1990: Comparative Investigations on Antioxidative Components in Needles of Spruce (Picea abies [L.] Karst.) Kept in Open-Top Chambers with Charcoal-filtered and Non-filtered Air. Angew. Botanik64, 489–502.Google Scholar
  21. Mehlhorn, H.;Seufert, G.;Schmidt, A.;Kunert, K. J., 1986: Effects of SO2 and O3 on production of antioxidants in conifers. Plant Physiol.82, 336–338.CrossRefGoogle Scholar
  22. Meuwly, P.;Rauser, W. E., 1992: Alteration of Thiol Pools in Roots and Shoots of Maize Seedlings Exposed to Cadmium. Plant Physiol.99, 8–15.CrossRefGoogle Scholar
  23. Nakano, Y.;Asada, K., 1980: Spinach chloroplasts scavenge hydrogen peroxide upon illumination. Plant Cell Physiol.21, 1295–1307.CrossRefGoogle Scholar
  24. Newton, G. L.;Dorian, R.;Fahey, R. C., 1981: Analysis of Biological Thiols: Derivatization with Monobromobimane and Separation by Reversed-Phase High-Performance Liquid Chromatographie. Anal. Biochem.114, 383–387.CrossRefGoogle Scholar
  25. Osswald, W. F.;Senger, H.;Elstner, E. F., 1987: Ascorbic Acid and Glutathione Contents of Spruce Needles from Different Locations in Bavaria. Z. Naturforsch.42c, 879–884.Google Scholar
  26. Osswald, W. F.;Kraus, R.;Hippeli, S.;Benz, B.;Volpert, R.;Elstner, E. F., 1992: Comparison of the Enzymatic Activities of Dehydroascorbic acid Reductase, Glutathione Reductase, Catalase, Peroxidase and Superoxide Dismutase of Healthy and Damaged Spruce Needles (Picea abies [L.] Karst). J. Plant Physiol.139, 742–748.CrossRefGoogle Scholar
  27. Polle, A.;Chakrabarti, K.;Schürmann, W.;Rennenberg, H., 1990: Composition and Properties of Hydrogen Peroxide Decomposing Systems in Extracellular and Total Extracts of Norway Spruce (Picea abies L., Karst.). Plant Physiol.94, 312–319.CrossRefGoogle Scholar
  28. Polle, A.;Rennenberg, H., 1992: Field studies on Norway spruce trees at high altitudes: II. Defence systems against oxidative stress in needles. New Phytol.121, 635–642.CrossRefGoogle Scholar
  29. Rennenberg, H.;Schmitz, K.;Bergmann, L., 1979: Long-distance transport of sulfur inNicotiana tabacum. Planta,147, 57–62.CrossRefGoogle Scholar
  30. Smith, I. K.;Vierheller, T. L.;Thorne, C. A., 1989: Properties and functions of glutathion reductase in plants. Physiol. Plant.77, 449–456.CrossRefGoogle Scholar
  31. Smith, I. K.;Polle, A.;Rennenberg, H., 1990: Glutathione. In:Alscher, R., Cumming, J. R., eds. Stress responses in plants: adaptation and acclimation mechanisms. New York: Wiley-Liss Inc., pp. 201–215.Google Scholar
  32. Schulz, H., 1992: Ein Verfahren zur biochemischen Frühdiagnose von Immissionswirkungen auf Kiefernnadeln (Pinus sylvestris L.). Halle-Wittenberg (Martin-Luther-Universität): Habilitationsschrift.Google Scholar
  33. Schupp, R.;Rennenberg, H., 1988: Diurnal Changes in the Gluthatione Content of Spruce Needles (Picea abies L.). Plant Science57, 113–117.CrossRefGoogle Scholar
  34. Speek, A. J.;Schrijver, J.;Schreurs, W. H. P., 1984: Fluorometric Determination of Total Vitamin C in Whole Blood by High-Performance Liquid Chromatography with Pre-Column Derivatization. J. Chrom.305, 53–60.CrossRefGoogle Scholar
  35. Wild, A.; Schmitt, V., 1992: Forschungsberichte zum Forschungsprogramm des Landes Nordrhein-Westfalen “Luftverunreinigungen und Waldschäden” Nr. 24, Biochemische und feinstrukturelle Untersuchungen an Blattorganen von Buchen und Fichten im Rahmen der Projekte “Begasungsversuch Kettwig '90” und “Open-Top-Kammer-Versuch Eggegebirge” der Landesanstalt für Immissionsschutz (LIS).Google Scholar
  36. Wingsle, G.;Sandberg, G.;Hällgren, J.-E., 1989: Determination of Glutathione in Scots Pine Needles by High-Performance Liquid Chromatography as its Monobromobimane Derivative. J. Chrom.479, 335–344.CrossRefGoogle Scholar
  37. Wingsle, G.;Hällgren, J.-E., 1993: Influence of SO2 and NO2 Exposure on Glutathione, Superoxide Dismutase and Glutathione Reductase Activities in Scots Pine Needles. J. Exper. Botany44, 463–470.CrossRefGoogle Scholar

Copyright information

© Blackwell Wissenschafts-Verlag 1995

Authors and Affiliations

  • Sigrid Härtling
    • 1
  • H. Schulz
    • 1
  1. 1.Sektion Chemische ÖkotoxikologieUFZ-Umweltforschungszentrum Leipzig-Halle GmbHBad Lauchstädt

Personalised recommendations