Journal of Structural Chemistry

, Volume 41, Issue 2, pp 318–328 | Cite as

Quantum chemical models and electronic structure of active centers of heterogeneous polymerization of olefins

  • I. I. Zakharov


The peculiarities of the catalytic activity in olefin polymerizations which can find explanation in terms of the concepts suggested in this work are as follows.

First, the low catalytic activity of the individual organometal compounds of group IV-VI transition metals is indicative [53] of the important role of the coordination state of the transition metal in AC, which, according to Cosse's model, must be octahedral (tetrahedral for individual metal-alkyl compounds MRn).

Second, the activity of a catalytic system depends essentially on the nature of the ligand environment of the metal in AC. The catalysts based on titanium halides display the highest activity.

Third, the results of [19, 20] show that the highly active catalytic centers of homogeneous Ziegler-Natta's systems are “cation-like” Zr(IV) complexes Cp2Zr+-R. All these features find explanation in terms of the concept of the competitive contributions from the AC metal s and d orbitals to the active M-R bond. Thus a transition of AC environment from tetrahedral to octahedral may be compared with a change in transition metal AO hybridization:d 3s1 (tetrahedron) ⇒d 3s1 (octahedron).


Chain Propagation Orbital Structure Insertion Reaction Hydride Transfer Orbital Contribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Keii and K. Soga,Catalytic Polymerization of Olefins, Elsevier, Tokyo (1986).Google Scholar
  2. 2.
    W. Kaminsky and H. Sinn (eds.),Transition Metals and Organometallics as Catalysts for Olefin Polymerizations. Springer, Berlin (1988).Google Scholar
  3. 3.
    Yu. I. Ermakov, B. N. Kuznetsov, and V. A. Zakharov,Catalysis by Supported Complexes, Elsevier, Amsterdam (1981).Google Scholar
  4. 4.
    P. Cosse.J. Catalysis,3, 80–88 (1964).CrossRefGoogle Scholar
  5. 5.
    P. Cosse, P. Ros, and J. H. Schachtschneider,Proceedings of the 4th International Congress on Catalysis, Moscow, 1968, Academiai Kiado, Budapest (1971), pp. 207–217.Google Scholar
  6. 6.
    O. Novaro, E. Blaisten-Barojas, E. Clementi, et al.,J. Chem. Phys.,68, 2337–2355 (1978).CrossRefGoogle Scholar
  7. 7.
    M. L. Steigerwald and W. A. Goddard,.J. Am. Chem. Soc,106, 308–311 (1984).CrossRefGoogle Scholar
  8. 8.
    H. Fujimoto, T. Yamasaki, H. Mizutani, and N. Koga.ibid.,107, 6157–6161 (1985).CrossRefGoogle Scholar
  9. 9.
    S. Sakai,J. Phys. Chem.,95, 175–178 (1991).CrossRefGoogle Scholar
  10. 10.
    S. Sakai,ibid.,95, 7089–7093 (1991).CrossRefGoogle Scholar
  11. 11.
    S. Sakai,ibid.,98, 12053–12058 (1994).CrossRefGoogle Scholar
  12. 12.
    V. R. Jensen, K. J. Borve, and M. Ystens.J. Am. Chem. Soc,117, 4109–4117 (1995).CrossRefGoogle Scholar
  13. 13.
    L. Cavallo, G. Guerra, and P. Corradini,ibid.,120, 2428–2436 (1998).CrossRefGoogle Scholar
  14. 14.
    C. A. Jolly and D. S. Margnick.ibid.,111, 7968–7974 (1989).CrossRefGoogle Scholar
  15. 15.
    H. Kawamura-Kuribayashi, N. Koga, and K. Morokuma,ibid.,114, 2359–2364 (1992).CrossRefGoogle Scholar
  16. 16.
    H. Kawamura-Kuribayashi, N. Koga, and K. Morokuma ,ibid. J. Am. Chem. Soc, 8687-8694.Google Scholar
  17. 17.
    L. A. Castonguay and A. K. Rappe,ibid.,114, 5832–5842 (1992).CrossRefGoogle Scholar
  18. 18.
    I. Hyla-Kryspin, S. J. Silverio. S. Niu. and R. Gleiter.,J. Mol. Catal.,115, 183–192 (1997).CrossRefGoogle Scholar
  19. 19.
    X. Yang. C. L. Stern, and T. J. Marks.J. Am. Chem. Soc. 3623-3625.Google Scholar
  20. 20.
    Y. W. Alelyunas, R. F. Jordan, S. F. Echols, et al.,Organometallics,10, 1406–1409 (1991).CrossRefGoogle Scholar
  21. 21.
    I. I. Zakharov, V. A. Zakharov, and G. M. Zhidomirov.Kinet. Katal.,35, 74–82 (1994).Google Scholar
  22. 22.
    H. Zeiss (ed.),Organometallic Chemistry, Reinhold, London (1960).Google Scholar
  23. 23.
    K. W. Egger,Trans. Faraday Soc,67, 2638–2644 (1971).CrossRefGoogle Scholar
  24. 24.
    V. A. Zakharov, N. B. Chumaevskii. G. D. Bukatov, and Yu. I. Yermakov,Makromol. Chem.,177, 763–775 (1975).CrossRefGoogle Scholar
  25. 25.
    I. C. W. Chien,J. Am. Chem. Soc,81 86–89 (1959).CrossRefGoogle Scholar
  26. 26.
    M. J. S. Dewar,Tetrahedron Suppl,8, 75–78 (1966).CrossRefGoogle Scholar
  27. 27.
    H. E. Zimmerman,Acc. Chem. Res.,4, 272–275 (1971).CrossRefGoogle Scholar
  28. 28.
    R. G. Pearson,Symmetry Rules for Chemical Reactions, Wiley. New York (1976).Google Scholar
  29. 29.
    R. B. Woodward and R. Hoffmann.The Conservation of Orbital Symmetry, Academic Press, New York (1970).Google Scholar
  30. 30.
    F. D. Mango and J. H. Schachtschneider,J. Am. Chem. Soc,93, 1123–1130 (1971).CrossRefGoogle Scholar
  31. 31.
    E. Fukui.Theory of Orientation and Stereoselection, Springer, West Berlin (1974).Google Scholar
  32. 32.
    I. I. Zakharov and V. A. Zakharov,J. Mol. Catal.,14, 171–184 (1982).CrossRefGoogle Scholar
  33. 33.
    I. I. Zakharov and V. A. Zakharov.React. Kinet. Catal. Lett.,14, 169–173 (1980).CrossRefGoogle Scholar
  34. 34.
    I. I. Zakharov, G. M. Zhidomirov, and V. A. Zakharov,J. Mol. Catal.,68, 149–157 (1991).CrossRefGoogle Scholar
  35. 35.
    P. E. M. Seigbahn.Chem. Phys. Lett.. 205, 290–300 (1993).CrossRefGoogle Scholar
  36. 36.
    V. R. Jensen and P. E. M. Seigbahn,ibid.. 212, 353–361 (1993).CrossRefGoogle Scholar
  37. 37.
    P. E. M. Seigbahn,J. Am. Chem. Soc,115, 5803–5812 (1993).CrossRefGoogle Scholar
  38. 38.
    W. Kaminski,Catalysis Today,20, 257–271 (1994).CrossRefGoogle Scholar
  39. 39.
    S. Ceska.J. Polym. Sci. Macromol. Rev.,10, 1–97 (1975).CrossRefGoogle Scholar
  40. 40.
    I. I. Zakharov, V. A. Zakharov, and G. M. Zhidomirov,Kinet. Katal.,37, 40–45 (1996).Google Scholar
  41. 41.
    I. I. Zakharov, V. A. Zakharov, and G. M. Zhidomirov,ibid. ,38, 254–258 (1997).Google Scholar
  42. 42.
    I. I. Zakharov, V. A. Zakharov, and G. M. Zhidomirov,Macromol. Theory Simul.,5, 837–843 (1996).CrossRefGoogle Scholar
  43. 43.
    L. N. Russiyan, P. E. Matkovskii, V. N. Noskova, et al.,Vysokomolek. Soedin.,33, 280–289 (1991).Google Scholar
  44. 44.
    G. Natta and I. Pasquon,Adv. Catal,11, 1–66 (1959).CrossRefGoogle Scholar
  45. 45.
    J. P. Callmann, L. S. Hegedus, J. R. Norton, and R. G. Finke,Principles and Applications of Organotransition Metal Chemistry, University Science Books, Mill Valley CA (1987), Ch. 11.Google Scholar
  46. 46.
    Yu. I. Ermakov, L. P. Ivanov. and A. G. Gelbshtein,Kinet. Katal.. 10, 183–190 (1969).Google Scholar
  47. 47.
    R. Blom, A. Follestad, and O. Noel,J. Mol. Catal,91, 237–249 (1994).CrossRefGoogle Scholar
  48. 48.
    V. A. Zakharov, L. G. Echevskaya, G. A. Nesterov, et al.,Vysokomolek. Soedin.,26, 993–997 (1984).Google Scholar
  49. 49.
    J. C. W. Lohrenz, T. K. Woo, and T. Ziegler,J. Am. Chem. Soc,117, 12793–12800 (1995).CrossRefGoogle Scholar
  50. 50.
    T. K. Woo, L. Fan, and T. Ziegler, in:Ziegler Catalysts, G. Fink, R. Mulhaupt, and H. H. Brintzinger (eds.), Springer, Berlin (1995), pp. 291–315.Google Scholar
  51. 51.
    P. M. Margi, J. C. W. Lohrenz, P. E. Blochl, and T. Ziegler,J. Am. Chem. Soc,118, 4434–4441 (1996).CrossRefGoogle Scholar
  52. 52.
    I. I. Zakharov, V. A. Zakharov, and G. M. Zhidomirov,Kinet. Katal.,37, 46–50 (1996).Google Scholar
  53. 53.
    I. I. Zakharov and V. A. Zakharov,React. Kinet. Catal. Lett.,23, 61–66 (1983).CrossRefGoogle Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 2000

Authors and Affiliations

  • I. I. Zakharov
    • 1
  1. 1.Institute of Catalysis, Siberian BranchRussian Academy of SciencesUSSR

Personalised recommendations