Skip to main content
Log in

Quantum chemical models and electronic structure of active centers of heterogeneous polymerization of olefins

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Conclusions

The peculiarities of the catalytic activity in olefin polymerizations which can find explanation in terms of the concepts suggested in this work are as follows.

First, the low catalytic activity of the individual organometal compounds of group IV-VI transition metals is indicative [53] of the important role of the coordination state of the transition metal in AC, which, according to Cosse's model, must be octahedral (tetrahedral for individual metal-alkyl compounds MRn).

Second, the activity of a catalytic system depends essentially on the nature of the ligand environment of the metal in AC. The catalysts based on titanium halides display the highest activity.

Third, the results of [19, 20] show that the highly active catalytic centers of homogeneous Ziegler-Natta's systems are “cation-like” Zr(IV) complexes Cp2Zr+-R. All these features find explanation in terms of the concept of the competitive contributions from the AC metal s and d orbitals to the active M-R bond. Thus a transition of AC environment from tetrahedral to octahedral may be compared with a change in transition metal AO hybridization:d 3s1 (tetrahedron) ⇒d 3s1 (octahedron).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Keii and K. Soga,Catalytic Polymerization of Olefins, Elsevier, Tokyo (1986).

    Google Scholar 

  2. W. Kaminsky and H. Sinn (eds.),Transition Metals and Organometallics as Catalysts for Olefin Polymerizations. Springer, Berlin (1988).

    Google Scholar 

  3. Yu. I. Ermakov, B. N. Kuznetsov, and V. A. Zakharov,Catalysis by Supported Complexes, Elsevier, Amsterdam (1981).

    Google Scholar 

  4. P. Cosse.J. Catalysis,3, 80–88 (1964).

    Article  Google Scholar 

  5. P. Cosse, P. Ros, and J. H. Schachtschneider,Proceedings of the 4th International Congress on Catalysis, Moscow, 1968, Academiai Kiado, Budapest (1971), pp. 207–217.

    Google Scholar 

  6. O. Novaro, E. Blaisten-Barojas, E. Clementi, et al.,J. Chem. Phys.,68, 2337–2355 (1978).

    Article  CAS  Google Scholar 

  7. M. L. Steigerwald and W. A. Goddard,.J. Am. Chem. Soc,106, 308–311 (1984).

    Article  CAS  Google Scholar 

  8. H. Fujimoto, T. Yamasaki, H. Mizutani, and N. Koga.ibid.,107, 6157–6161 (1985).

    Article  CAS  Google Scholar 

  9. S. Sakai,J. Phys. Chem.,95, 175–178 (1991).

    Article  CAS  Google Scholar 

  10. S. Sakai,ibid.,95, 7089–7093 (1991).

    Article  CAS  Google Scholar 

  11. S. Sakai,ibid.,98, 12053–12058 (1994).

    Article  CAS  Google Scholar 

  12. V. R. Jensen, K. J. Borve, and M. Ystens.J. Am. Chem. Soc,117, 4109–4117 (1995).

    Article  CAS  Google Scholar 

  13. L. Cavallo, G. Guerra, and P. Corradini,ibid.,120, 2428–2436 (1998).

    Article  CAS  Google Scholar 

  14. C. A. Jolly and D. S. Margnick.ibid.,111, 7968–7974 (1989).

    Article  CAS  Google Scholar 

  15. H. Kawamura-Kuribayashi, N. Koga, and K. Morokuma,ibid.,114, 2359–2364 (1992).

    Article  CAS  Google Scholar 

  16. H. Kawamura-Kuribayashi, N. Koga, and K. Morokuma ,ibid. J. Am. Chem. Soc, 8687-8694.

  17. L. A. Castonguay and A. K. Rappe,ibid.,114, 5832–5842 (1992).

    Article  CAS  Google Scholar 

  18. I. Hyla-Kryspin, S. J. Silverio. S. Niu. and R. Gleiter.,J. Mol. Catal.,115, 183–192 (1997).

    Article  CAS  Google Scholar 

  19. X. Yang. C. L. Stern, and T. J. Marks.J. Am. Chem. Soc. 3623-3625.

  20. Y. W. Alelyunas, R. F. Jordan, S. F. Echols, et al.,Organometallics,10, 1406–1409 (1991).

    Article  CAS  Google Scholar 

  21. I. I. Zakharov, V. A. Zakharov, and G. M. Zhidomirov.Kinet. Katal.,35, 74–82 (1994).

    CAS  Google Scholar 

  22. H. Zeiss (ed.),Organometallic Chemistry, Reinhold, London (1960).

    Google Scholar 

  23. K. W. Egger,Trans. Faraday Soc,67, 2638–2644 (1971).

    Article  CAS  Google Scholar 

  24. V. A. Zakharov, N. B. Chumaevskii. G. D. Bukatov, and Yu. I. Yermakov,Makromol. Chem.,177, 763–775 (1975).

    Article  Google Scholar 

  25. I. C. W. Chien,J. Am. Chem. Soc,81 86–89 (1959).

    Article  CAS  Google Scholar 

  26. M. J. S. Dewar,Tetrahedron Suppl,8, 75–78 (1966).

    Article  Google Scholar 

  27. H. E. Zimmerman,Acc. Chem. Res.,4, 272–275 (1971).

    Article  CAS  Google Scholar 

  28. R. G. Pearson,Symmetry Rules for Chemical Reactions, Wiley. New York (1976).

    Google Scholar 

  29. R. B. Woodward and R. Hoffmann.The Conservation of Orbital Symmetry, Academic Press, New York (1970).

    Google Scholar 

  30. F. D. Mango and J. H. Schachtschneider,J. Am. Chem. Soc,93, 1123–1130 (1971).

    Article  CAS  Google Scholar 

  31. E. Fukui.Theory of Orientation and Stereoselection, Springer, West Berlin (1974).

    Google Scholar 

  32. I. I. Zakharov and V. A. Zakharov,J. Mol. Catal.,14, 171–184 (1982).

    Article  CAS  Google Scholar 

  33. I. I. Zakharov and V. A. Zakharov.React. Kinet. Catal. Lett.,14, 169–173 (1980).

    Article  CAS  Google Scholar 

  34. I. I. Zakharov, G. M. Zhidomirov, and V. A. Zakharov,J. Mol. Catal.,68, 149–157 (1991).

    Article  CAS  Google Scholar 

  35. P. E. M. Seigbahn.Chem. Phys. Lett.. 205, 290–300 (1993).

    Article  Google Scholar 

  36. V. R. Jensen and P. E. M. Seigbahn,ibid.. 212, 353–361 (1993).

    Article  CAS  Google Scholar 

  37. P. E. M. Seigbahn,J. Am. Chem. Soc,115, 5803–5812 (1993).

    Article  Google Scholar 

  38. W. Kaminski,Catalysis Today,20, 257–271 (1994).

    Article  Google Scholar 

  39. S. Ceska.J. Polym. Sci. Macromol. Rev.,10, 1–97 (1975).

    Article  Google Scholar 

  40. I. I. Zakharov, V. A. Zakharov, and G. M. Zhidomirov,Kinet. Katal.,37, 40–45 (1996).

    Google Scholar 

  41. I. I. Zakharov, V. A. Zakharov, and G. M. Zhidomirov,ibid. ,38, 254–258 (1997).

    Google Scholar 

  42. I. I. Zakharov, V. A. Zakharov, and G. M. Zhidomirov,Macromol. Theory Simul.,5, 837–843 (1996).

    Article  CAS  Google Scholar 

  43. L. N. Russiyan, P. E. Matkovskii, V. N. Noskova, et al.,Vysokomolek. Soedin.,33, 280–289 (1991).

    CAS  Google Scholar 

  44. G. Natta and I. Pasquon,Adv. Catal,11, 1–66 (1959).

    Article  CAS  Google Scholar 

  45. J. P. Callmann, L. S. Hegedus, J. R. Norton, and R. G. Finke,Principles and Applications of Organotransition Metal Chemistry, University Science Books, Mill Valley CA (1987), Ch. 11.

    Google Scholar 

  46. Yu. I. Ermakov, L. P. Ivanov. and A. G. Gelbshtein,Kinet. Katal.. 10, 183–190 (1969).

    CAS  Google Scholar 

  47. R. Blom, A. Follestad, and O. Noel,J. Mol. Catal,91, 237–249 (1994).

    Article  CAS  Google Scholar 

  48. V. A. Zakharov, L. G. Echevskaya, G. A. Nesterov, et al.,Vysokomolek. Soedin.,26, 993–997 (1984).

    CAS  Google Scholar 

  49. J. C. W. Lohrenz, T. K. Woo, and T. Ziegler,J. Am. Chem. Soc,117, 12793–12800 (1995).

    Article  CAS  Google Scholar 

  50. T. K. Woo, L. Fan, and T. Ziegler, in:Ziegler Catalysts, G. Fink, R. Mulhaupt, and H. H. Brintzinger (eds.), Springer, Berlin (1995), pp. 291–315.

    Google Scholar 

  51. P. M. Margi, J. C. W. Lohrenz, P. E. Blochl, and T. Ziegler,J. Am. Chem. Soc,118, 4434–4441 (1996).

    Article  Google Scholar 

  52. I. I. Zakharov, V. A. Zakharov, and G. M. Zhidomirov,Kinet. Katal.,37, 46–50 (1996).

    Google Scholar 

  53. I. I. Zakharov and V. A. Zakharov,React. Kinet. Catal. Lett.,23, 61–66 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated fromZhurnal Strukturnoi Khimii, Vol. 41, No. 2, pp. 391–404, March–April, 2000.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zakharov, I.I. Quantum chemical models and electronic structure of active centers of heterogeneous polymerization of olefins. J Struct Chem 41, 318–328 (2000). https://doi.org/10.1007/BF02741598

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02741598

Keywords

Navigation