Advertisement

Il Nuovo Cimento B (1971-1996)

, Volume 105, Issue 8–9, pp 1047–1054 | Cite as

Nonlinear velocities in generalized riemann ellipsoids

  • S. Filippi
  • R. Ruffini
  • A. Sepulveda
Article

Summary

The Dirichlet problem concerning the equilibrium conditions, under which a self-gravitating homogeneous fluid-mass can maintain at every instant an ellipsoidal form, is here generalized. We provide the conditions necessary to solve the Dirichlet problem in a more general case of heterogeneous masses having nonlinear internal motions, using the second-order virial equations. The conditions for the stability are presented. It is also proved that the Dedekind theorem generalized to these new solutions is valid. These models may lead to a direct explanation of some basic features of galactic morphology.

PACS

95.30 Fundamental aspects of astrophysics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C. G. J. Jacobi:Poggendorff Annalen der Physik und Chemie,33, 229 (1834).ADSCrossRefGoogle Scholar
  2. [2]
    G. Dirichlet:J. Reine Angew. Math.,58, 181 (1860).Google Scholar
  3. [3]
    R. Dedekind:J. Reine Angew. Math.,58, 217 (1860).MathSciNetGoogle Scholar
  4. [4]
    B. Riemann:Abh. Konigl. Gesell. Wis. zu Gottigen,9, 3 (1860).Google Scholar
  5. [5]
    S. Chandrasekhar:Ellipsoidal Figures of Equilibrium (Yale University Press, New Haven and London, 1969).MATHGoogle Scholar
  6. [6]
    S. Filippi, R. Ruffini andA. Sepulveda:Astron. Astrophys.,231, 30 (1990).MathSciNetADSMATHGoogle Scholar
  7. [7]
    S. Filippi, R. Ruffini andA. Sepulveda: in preparation (1990).Google Scholar
  8. [8]
    F. Pacheco, G. Pucacco andR. Ruffini:Astron. Astrophys.,161, 39 (1986).ADSMATHGoogle Scholar
  9. [9]
    G. Busarello, S. Filippi andR. Ruffini:Astron. Astrophys.,197, 91 (1988).ADSMATHGoogle Scholar
  10. [10]
    G. Busarello, S. Filippi andR. Ruffini:Astron. Astrophys.,213, 80 (1989).ADSGoogle Scholar
  11. [11]
    G. Busarello, S. Filippi andR. Ruffini:Astron. Astrophys.,227, 30 (1990).MathSciNetADSGoogle Scholar
  12. [12]
    F. Pacheco, G. Pucacco, R. Ruffini andG. Sebastiani:Astron. Astrophys.,210, 42 (1989).MathSciNetADSMATHGoogle Scholar
  13. [13]
    R. Wiegandt:Astron. Astrophys.,106, 240 (1982).ADSMATHGoogle Scholar

Copyright information

© Società Italiana di Fisica 1990

Authors and Affiliations

  • S. Filippi
    • 1
  • R. Ruffini
    • 1
  • A. Sepulveda
    • 1
  1. 1.ICRA, International Center for Relativistic Astrophysics Dipartimento di FisicaUniversitd di Roma I «La Sapienza»Roma

Personalised recommendations