Advertisement

Il Nuovo Cimento B (1971-1996)

, 110:133 | Cite as

Quantum-mechanical calculation of travel time across a potential barrier and the problem of classical limit

  • D. Sen
  • A. N. Basu
  • S. Sengupta
Article
  • 19 Downloads

Summary

Conditions are examined under which the quantum-mechanical travel time across a potential barrier goes over to the classical result. It is found that the limiting process is quite complex and sensitive to many details such as the nature of the incident state vector and the analytic properties of the potential barrier. An interesting result is that in the present problem the classical limit is reached for a wave packet that is sharply localised in momentum space only and is insensitive to the spatial extension. This is in sharp contrast to the results we obtained for scattering. Another significant conclusion is that the classical limit may converge either to that of a single classical particle or of a classical statistical ensemble depending on the nature of the initial wave packet.

PACS

03.65.Bz Foundations theory of measurement miscellaneous theories 

PACS

03.65 Quantum theory quantum mechanics 

PACS

03.65.Nk Nonrelativistic scattering theory 

References

  1. [1]
    Rohrlich F.,Found. Phys.,20 (1990) 1399.MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    Home D. andSengupta S.,Nuovo Cimento B,82 (1984) 214.MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    Cabreka G. G. andKiwi M.,Phys. Rev. A,36 (1987) 2995.MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    Liboff R. L.,Phys. Today,37 (1984) 50.CrossRefGoogle Scholar
  5. [5]
    Peter Rowe E. G.,J. Phys. A,20 (1987) 1419.MathSciNetCrossRefGoogle Scholar
  6. [6]
    Basu A. N. andSengupta S.,Nuovo Cimento B,106 (1991) 511;Sen D., Basu A. N. andSengupta S.:Phys. Rev. A,44 (1991) 337.ADSCrossRefGoogle Scholar
  7. [7]
    Hauge E. H. andStØvneng J. A.,Rev. Mod. Phys.,61 (1989) 917.ADSCrossRefGoogle Scholar
  8. [8]
    Hauge E. H., Falck J. P. andFjeldly T. A.,Phys. Rev. B,36 (1987) 4203.ADSCrossRefGoogle Scholar
  9. [9]
    Bohm D.,Quantum Theory (Prentice Hall Inc.) 1951, p. 267.Google Scholar
  10. [10]
    Ballentine L. E.,Quantum Mechanics (Prentice Hall Inc.) 1990, p. 295.Google Scholar

Copyright information

© Società Italiana di Fisica 1995

Authors and Affiliations

  • D. Sen
    • 1
  • A. N. Basu
    • 1
  • S. Sengupta
    • 1
  1. 1.Condensed Matter Physics Research Centre, Department of PhysicsJadavpur UniversityCalcuttaIndia

Personalised recommendations