Advertisement

Il Nuovo Cimento B (1971-1996)

, Volume 110, Issue 5–6, pp 751–769 | Cite as

Superselection rules; old and new

  • A. S. Wightman
Article

Summary

This paper is a historical review of the development of the notion of superselection rule starting from the recognition in 1952 of the charge and univalence superselection rules. Some applications to environmentally induced superselection rules in the last decade are briefly described.

PACS

03.65.Bz Foundations theory of measurement miscellaneous theories 

PACS

01.30.Cc Conference proceedings 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    von Neumann J.,Mathematische Grundlagen der quantenmechanik (Julius Springer, Berlin) 1932;Mathematical Foundations of Quantum Mechanics, translated byR. T. Beyer (Princeton University Press, Princeton, N.J.) 1955, especially p. 167 of the original. I have translated «... es ist zweckmÄssig anzunehmen,...» as «... it is appropriate to assume,...» instead of Beyer’s «... it is convenient to assume, ...». My dictionary prefers «suitable for the object in view».MATHGoogle Scholar
  2. [2]
    Yang C. N. andTiomno J.,Phys. Rev.,79 (1950) 495.MathSciNetADSCrossRefMATHGoogle Scholar
  3. [3]
    Zharkov G. F.,Sov. Phys. JETP,20 (1950) 492.Google Scholar
  4. [4]
    Orear J., Rosenfeld A. H. andSchluter R. A. (Editors),Proceedings of the International Conference, Nuclear Physics and the Physics of Fundamental Particles,September 17–22, 1951, sect. IIC. On the inversion properties of spin-(l/2) fields, see pp. 109–110, reported by Morris Scharff.Google Scholar
  5. [5]
    Wick G. C., Wightman A. S. andWigner E. P.,Phys. Rev.,88 (1952) 101.MathSciNetADSCrossRefMATHGoogle Scholar
  6. [6]
    Cartan E.,LeÇons sur la théorie des spineurs I, II. Actualités scientifiques et industrielles (Hermann, Paris) 1938, pp. 643 and 701.Google Scholar
  7. [7]
    Hegerfeldt G. C., Kraus K. andWigner E. P.,J. Math. Phys.,9 (1968) 2029.MathSciNetADSCrossRefMATHGoogle Scholar
  8. [8]
    Aharanov Y. andSusskind L.,Phys. Rev.,155 (1967) 1428;158 (1967) 1237;Mermin R.,Phys. Rev.,186 (1969) 1380;Phys. Rev. D,1 (1970) 3349.ADSCrossRefGoogle Scholar
  9. [9]
    Badurek G., Rauch H. andSummhammer J.,Physim B,151 (1988) 82.ADSCrossRefGoogle Scholar
  10. [10]
    Wick G. C., Wightman A. S. andWigner E. P.,Phys. Rev. D,1 (1970) 3267.ADSCrossRefGoogle Scholar
  11. [11]
    Newman M. H. A.,J. London Math. Soc.,17 (1942) 173.MathSciNetCrossRefGoogle Scholar
  12. [12]
    Naber G. L.,The Geometry of Minkowski Space (Springer-Verlag, New York, NX) 1992, especially appendix B, pp. 226–239.CrossRefGoogle Scholar
  13. [13]
    Misner C. W., Thorne K. S. andWheeler J. A.,Gravitation (W. H. Freeman, San Francisco, Cal.) 1973, Chapt. 41,Spinors, pp. 1135–1165 especially sect. 41.5, pp. 1148–1150.Google Scholar
  14. [14]
    Bargmann V.,Ann. Math.,59 (1954) 1.MathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    Wightman A. S.,Nuovo Cimento Suppl.,14 (1959) 81, especially p. 93. See alsoRelations de dispersion et particules élémentaires (Hermann, Paris) 1960, especially pp. 176–181.MathSciNetGoogle Scholar
  16. [16]
    Wigner E. P. Group Theoretical Concepts in Elementary Particle Physics, edited byF. Gürsey (Academic Press, New York, N.Y.) 1965, pp. 37–80.Google Scholar
  17. [17]
    Jost R.,Helv. Phys. Acta,30 (1957) 409.MathSciNetMATHGoogle Scholar
  18. [18]
    Lee T. D. andWick G. C.,Phys. Rev.,148 (1966) 1385.MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    Jauch J. M.,Helv. Phys. Acta,34 (1961) 711.MathSciNetGoogle Scholar
  20. [20]
    Wigner E. P. andYanase M. M.,Proc. Natl Acad. Sci. (USA),49 (1963) 910;Canad. J. Math.,16 (1964) 397.MathSciNetADSCrossRefMATHGoogle Scholar
  21. [21]
    Wehel A.,Rev. Mod. Phys.,50 (1978) 221, especially p. 248, strong subadditivity and Lieb’s theorem and p. 252, skew entropy and the Wigner-Yanase-Dyson conjecture.ADSCrossRefGoogle Scholar
  22. [22]
    Wigner E. P.,Z. Phys.,133 (1952) 101.MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    Araki H. andYanase M.,Phys. Rev.,120 (1960) 622.MathSciNetADSCrossRefMATHGoogle Scholar
  24. [24]
    Haag R.,Ann. Phys. (Leipzig),11 (1963) 29.MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    Strocchi F. andWightman A. S.,J. Math. Phys.,15 (1974) 2198;17 (1976) 1930.MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    Haag R. andKastler D.,J. Math. Phys.,5 (1964) 548. The capsule treatment of the work of Haag, Kastler, Doplicher and Roberts in this section is given an extended exposition along with many further developments in the books [31] and [32].MathSciNetCrossRefGoogle Scholar
  27. [27]
    Doplicher S., Haag R. andRoberts J.,Commun. Math. Phys.,23 (1971) 199;35 (1974) 49.MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    Doplicher S. andRoberts J.,Commun. Math. Phys.,131 (1990) 51.MathSciNetADSCrossRefMATHGoogle Scholar
  29. [29]
    Buchholz D. andFredenhagen K.,Commun. Math. Phys.,84 (1982) 1.MathSciNetADSCrossRefMATHGoogle Scholar
  30. [30]
    Buchholz D.,Commun. Math. Phys.,85 (1982) 49.MathSciNetADSCrossRefMATHGoogle Scholar
  31. [31]
    Haag R.,Local Quantum Physics Fields, Particles Algebras (Springer-Verlag, Berlin) 1992.CrossRefMATHGoogle Scholar
  32. [32]
    Kastler D. (Editor),The Algebraic Theory of Superselection Sectors. Introduction and Recent Results (World Scientific, Singapore) 1990.Google Scholar
  33. [33]
    Omnès R.,The Interpretation of Quantum Mechanics (Princeton University Press, Princeton, N.J.) 1994.Google Scholar
  34. [34]
    Joos E. andZeh H.,Z. Phys. B,59 (1985) 223.ADSCrossRefGoogle Scholar
  35. [35]
    Zurek W.,Phys. Rev. D,26 (1983) 1862.MathSciNetADSCrossRefMATHGoogle Scholar
  36. [36]
    Wightman A. S.,Some comments on the quantum theory of measurement, inProceedings of the International Workshop Probability Methods in Mathematical Physics, Certosa di Pontignano,Siena, Italy,6-11 May 1991, edited byF. Guerra,M. Loffredo andC. Marchioro (World Scientific, Singapore) 1992, pp. 411–438.Google Scholar
  37. [37]
    It is worth noting that the word chirality was first intorduced byLord Kelvin in the 1904 version of hisBaltimore Lectures on Molecular Dynamics and the Wave Theory of Light (Cambridge University Press, Warehouse, London) 1904, Appendix H, p. 619, where he says: «I call any geometrical figure, or group of points,chiral, and say that it has chirality if its image in a plane mirror, ideally realized, cannot be brought to coincide with itself... » He also notes that such a pair of figures have been calledenantimorphs.MATHGoogle Scholar
  38. [38]
    Amann A., inLarge-Scale Molecular Systems: Quantum and Stochastic Aspects. Beyond the Simple Molecular Picture, edited byW. Gaus, A. Blumen andA. Amann (Plenum, New York, N.Y.) 1991, pp. 3–32.CrossRefGoogle Scholar
  39. [39]
    Jona-Lasinio G., Martinelli F. andScoppola E.,Commun. Math. Phys.,80 (1981) 223.MathSciNetADSCrossRefMATHGoogle Scholar
  40. [40]
    J. Funct. Anal.,63 (1985) 123.Google Scholar
  41. [41]
    Claverie P. andJona-Lasinio G.,Phys. Rev. A,33 (1986) 2245.ADSCrossRefGoogle Scholar
  42. [42]
    Anderson P. W.,Phys. Rev.,75 (1949) 1450L;76 (1949) 471A;76 (1949) 647.ADSCrossRefGoogle Scholar
  43. [43]
    Indications of such a red-shift are also found in the static calculations ofMargenan H.,Phys. Rev.,76 (1949) 1423.ADSCrossRefGoogle Scholar
  44. [44]
    Birnbaum G. andMaryott A. A.,Phys. Rev.,92 (1953) 270.ADSCrossRefGoogle Scholar
  45. [45]
    Amann A., inFractals Quasi-Crystals, Chaos, Knots, and Algebraic Quantum Mechanics (Kluwer) 1988, pp. 305–325. See alsoWightman A. S. andGlance N.,Nucl. Phys. B (Proc. Suppl.),6 (1989) 202.Google Scholar

Copyright information

© Società Italiana di Fisica 1995

Authors and Affiliations

  • A. S. Wightman
    • 1
  1. 1.Department of Physics, Joseph Henry LaboratoriesPrinceton UniversityPrincetonUSA

Personalised recommendations